• Capone VP, Morello W, Taroni F, Montini G. Genetics of congenital anomalies of the kidney and urinary tract: the current state of play. Int J Mol Sci. 2017;18:796.

  • Hays T, Thompson MV, Bateman DA, Sahni R, Tolia VN, Clark RH, et al. The prevalence and clinical significance of congenital anomalies of the kidney and urinary tract in preterm infants. JAMA Netw Open. 2022;5:e2231626.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loane M, Dolk H, Kelly A, Teljeur C, Greenlees R, Densem J, et al. Paper 4: EUROCAT statistical monitoring: identification and investigation of ten year trends of congenital anomalies in Europe. Birth Defects Res A Clin Mol Teratol. 2011;91:S31–43.

    PubMed 

    Google Scholar
     

  • Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet. 2019;51:117–27.

    PubMed 

    Google Scholar
     

  • van der Ven AT, Connaughton DM, Ityel H, Mann N, Nakayama M, Chen J, et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2018;29:2348–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76:528–33.

    PubMed 

    Google Scholar
     

  • Nicolaou N, Renkema KY, Bongers EM, Giles RH, Knoers NV. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015;11:720–31.

    PubMed 

    Google Scholar
     

  • Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol. 2016;12:133–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigam A, Knoers N, Renkema KY. Impact of next generation sequencing on our understanding of CAKUT. Semin Cell Dev Biol. 2019;91:104–10.

    PubMed 

    Google Scholar
     

  • Sanna-Cherchi S, Westland R, Ghiggeri GM, Gharavi AG. Genetic basis of human congenital anomalies of the kidney and urinary tract. J Clin Invest. 2018;128:4–15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neild GH. What do we know about chronic renal failure in young adults? I. Primary renal disease. Pediatr Nephrol. 2009;24:1913–9.

    PubMed 

    Google Scholar
     

  • Chevalier RL. CAKUT: a pediatric and evolutionary perspective on the leading cause of CKD in childhood. Pediatr Rep. 2023;15:143–53.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murugapoopathy V, Gupta IR. A primer on congenital anomalies of the kidneys and urinary tracts (CAKUT). Clin J Am Soc Nephrol. 2020;15:723–31.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malinowski J, Miller DT, Demmer L, Gannon J, Pereira EM, Schroeder MC, et al. Systematic evidence-based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability. Genet Med. 2020;22:986–1004.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekheirnia MR, Bekheirnia N, Bainbridge MN, Gu S, Coban Akdemir ZH, Gambin T, et al. Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. Genet Med. 2017;19:412–20.

    PubMed 

    Google Scholar
     

  • Groopman EE, Rasouly HM, Gharavi AG. Genomic medicine for kidney disease. Nat Rev Nephrol. 2018;14:83–104.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohl S, Habbig S, Weber LT, Liebau MC. Molecular causes of congenital anomalies of the kidney and urinary tract (CAKUT). Mol Cell Pediatr. 2021;8:2.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu P, Meng L, Normand EA, Xia F, Song X, Ghazi A, et al. Reanalysis of clinical exome sequencing data. N Engl J Med. 2019;380:2478–80.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parikh JR, Genetti CA, Aykanat A, Brownstein CA, Schmitz-Abe K, Danowski M, et al. A data-driven architecture using natural language processing to improve phenotyping efficiency and accelerate genetic diagnoses of rare disorders. HGG Adv. 2021;2:100035.

  • Robinson PN, Haendel MA. Ontologies, knowledge representation, and machine learning for translational research: recent contributions. Yearb Med Inf. 2020;29:159–62.


    Google Scholar
     

  • Liu C, Peres Kury FS, Li Z, Ta C, Wang K, Weng C. Doc2Hpo: a web application for efficient and accurate HPO concept curation. Nucleic Acids Res. 2019;47:W566–W70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greene D, Richardson S, Turro E. ontologyX: a suite of R packages for working with ontological data. Bioinformatics. 2017;33:1104–6.

    PubMed 

    Google Scholar
     

  • Scott TM, Campbell IM, Hernandez-Garcia A, Lalani SR, Liu P, Shaw CA, et al. Clinical exome sequencing data reveal high diagnostic yields for congenital diaphragmatic hernia plus (CDH+) and new phenotypic expansions involving CDH. J Med Genet. 2021;59:270–8.

    PubMed 

    Google Scholar
     

  • Campbell IM, Rao M, Arredondo SD, Lalani SR, Xia Z, Kang SH, et al. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet. 2013;9:e1003797.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Mouse Genome Database G. The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res. 2011;39:D842–8.

    PubMed 

    Google Scholar
     

  • Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, et al. PINA v2.0: mining interactome modules. Nucleic Acids Res. 2012;40:D862–5.

    PubMed 

    Google Scholar
     

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38:D355–60.

    PubMed 

    Google Scholar
     

  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    PubMed 

    Google Scholar
     

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004;101:6062–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28:1045–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Online Mendelian Inheritance in Man, OMIM®[online database], McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). https://omim.org [Accesssed Dec 2024].

  • Schofield D, Alam K, Douglas L, Shrestha R, MacArthur DG, Davis M, et al. Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases. NPJ Genom Med. 2017;2:4.

  • Posey JE, O’Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med. 2019;21:798–812.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarailo-Graovac M, Shyr C, Ross CJ, Horvath GA, Salvarinova R, Ye XC, et al. Exome sequencing and the management of neurometabolic disorders. N Engl J Med. 2016;374:2246–55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmer EE, Schofield D, Shrestha R, Kandula T, Macintosh R, Lawson JA, et al. Integrating exome sequencing into a diagnostic pathway for epileptic encephalopathy: Evidence of clinical utility and cost effectiveness. Mol Genet Genom Med. 2018;6:186–99.


    Google Scholar
     

  • Griesemer I, Staley BS, Lightfoot AF, Bain L, Byrd D, Conway C, et al. Engaging community stakeholders in research on best practices for clinical genomic sequencing. Per Med. 2020;17:435–44.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackley MP, Fletcher B, Parker M, Watkins H, Ormondroyd E. Stakeholder views on secondary findings in whole-genome and whole-exome sequencing: a systematic review of quantitative and qualitative studies. Genet Med. 2017;19:283–93.

    PubMed 

    Google Scholar
     

  • Knoers N, Antignac C, Bergmann C, Dahan K, Giglio S, Heidet L, et al. Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical practice. Nephrol Dial Transpl. 2022;37:239–54.


    Google Scholar
     

  • Ahram DF, Aggarwal VS, Sanna-Cherchi S. Phenocopies, phenotypic expansion, and coincidental diagnoses: time to abandon targeted gene panels?. Am J Kidney Dis. 2020;76:451–3.

    PubMed 

    Google Scholar
     

  • Posey JE. Genome sequencing and implications for rare disorders. Orphanet J Rare Dis. 2019;14:153.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brlek P, Bulic L, Bracic M, Projic P, Skaro V, Shah N, et al. Implementing whole genome sequencing (WGS) in clinical practice: advantages, challenges, and future perspectives. Cells. 2024;13:504.

  • Kohl S, Avni FE, Boor P, Capone V, Clapp WL, De Palma D, et al. Definition, diagnosis and clinical management of non-obstructive kidney dysplasia: a consensus statement by the ERKNet Working Group on Kidney Malformations. Nephrol Dial Transpl. 2022;37:2351–62.


    Google Scholar
     

  • Fraiman YS, Wojcik MH. The influence of social determinants of health on the genetic diagnostic odyssey: who remains undiagnosed, why, and to what effect?. Pediatr Res. 2021;89:295–300.

    PubMed 

    Google Scholar
     

  • Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKusick VA. Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet. 2007;80:588–604.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van den Ende J, et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet. 2014;46:380–4.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asegaonkar P, Kotecha U, Dongre M, Mistri M, Sharda S. Expanding the spectrum of ADNP-related disorder-Antenatally diagnosed congenital diaphragmatic hernia and a novel de novo mutation in ADNP gene. Am J Med Genet A. 2023;191:275–9.

    PubMed 

    Google Scholar
     

  • Vivante A, Mann N, Yonath H, Weiss AC, Getwan M, Kaminski MM, et al. A dominant mutation in nuclear receptor interacting protein 1 causes urinary tract malformations via dysregulation of retinoic acid signaling. J Am Sc Nephrol. 2017;28:2364–76.


    Google Scholar
     

  • Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376:21–31.

    PubMed 

    Google Scholar
     

  • Van Dijck A, Vulto-van Silfhout AT, Cappuyns E, van der Werf IM, Mancini GM, Tzschach A, et al. Clinical presentation of a complex neurodevelopmental disorder caused by mutations in ADNP. Biol Psychiatry. 2019;85:287–97.

    PubMed 

    Google Scholar
     

  • Farhang-Fallah J, Randhawa VK, Nimnual A, Klip A, Bar-Sagi D, Rozakis-Adcock M. The pleckstrin homology (PH) domain-interacting protein couples the insulin receptor substrate 1 PH domain to insulin signaling pathways leading to mitogenesis and GLUT4 translocation. Mol Cell Biol. 2002;22:7325–36.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, et al. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol. 2011;9:54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen S, Hoischen A, Coe BP, Carvill GL, Van Esch H, Bosch DGM, et al. A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP haploinsufficiency. Eur J Hum Genet. 2018;26:54–63.

    PubMed 

    Google Scholar
     

  • Craddock KE, Okur V, Wilson A, Gerkes EH, Ramsey K, Heeley JM, et al. Clinical and genetic characterization of individuals with predicted deleterious PHIP variants. Cold Spring Harb Mol Case Stud. 2019;5:a004200.

  • Groza T, Gomez FL, Mashhadi HH, Munoz-Fuentes V, Gunes O, Wilson R, et al. The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 2023;51:D1038–D45.

    PubMed 

    Google Scholar
     

  • de Fallois J, Sieckmann T, Schönauer R, Petzold F, Münch J, Pauly M, et al. Pathogenic PHIP variants are variably associated with CAKUT. Kidney Int Rep. 2024;9:2484–97.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudnawa KK, Calamia S, Geltzeiler A, Chung WK. Clinical phenotypes of individuals with Chung-Jansen syndrome across age groups. Am J Med Genet A. 2024;194:e63471.

    PubMed 

    Google Scholar
     

  • Tang Y, Chen Y, Wang J, Zhang Q, Wang Y, Xu Y, et al. Clinical characteristics and genetic expansion of 46,XY disorders of sex development children in a Chinese prospective study. Endocr Connect. 2023;12:e230029.

  • Kaur H, Panigrahi I. Chung-Jansen Syndrome with obesity. Obes Res Clin Pr. 2021;15:303–5.


    Google Scholar
     

  • Sessa A, Fagnocchi L, Mastrototaro G, Massimino L, Zaghi M, Indrigo M, et al. SETD5 regulates chromatin methylation state and preserves global transcriptional fidelity during brain development and neuronal wiring. Neuron. 2019;104:271–89.e13.

    PubMed 

    Google Scholar
     

  • Kuechler A, Zink AM, Wieland T, Ludecke HJ, Cremer K, Salviati L, et al. Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. Eur J Hum Genet. 2014;23:753–60.

  • Szczaluba K, Brzezinska M, Kot J, Rydzanicz M, Walczak A, Stawinski P, et al. SETD5 loss-of-function mutation as a likely cause of a familial syndromic intellectual disability with variable phenotypic expression. Am J Med Genet A. 2016;170:2322–7.

    PubMed 

    Google Scholar
     

  • Mohun T, Adams DJ, Baldock R, Bhattacharya S, Copp AJ, Hemberger M, et al. Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice. Dis Model Mech. 2013;6:562–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, et al. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. Biochim Biophys Acta. 2013;1833:122–39.

    PubMed 

    Google Scholar
     

  • Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, et al. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet. 2010;87:250–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hecht A, Meyer JA, Behnert A, Wong E, Chehab F, Olshen A, et al. Molecular and phenotypic diversity of CBL-mutated juvenile myelomonocytic leukemia. Haematologica. 2022;107:178–86.

    PubMed 

    Google Scholar
     

  • Martinelli S, Stellacci E, Pannone L, D’Agostino D, Consoli F, Lissewski C, et al. Molecular diversity and associated phenotypic spectrum of germline CBL mutations. Hum Mutat. 2015;36:787–96.

    PubMed 

    Google Scholar
     

  • Caro-Llopis A, Rosello M, Orellana C, Oltra S, Monfort S, Mayo S, et al. De novo mutations in genes of mediator complex causing syndromic intellectual disability: mediatorpathy or transcriptomopathy?. Pediatr Res. 2016;80:809–15.

    PubMed 

    Google Scholar
     

  • Smol T, Petit F, Piton A, Keren B, Sanlaville D, Afenjar A, et al. MED13L-related intellectual disability: involvement of missense variants and delineation of the phenotype. Neurogenetics. 2018;19:93–103.

    PubMed 

    Google Scholar
     

  • Yi Z, Zhang Y, Song Z, Pan H, Yang C, Li F, et al. Report of a de novo c.2605C > T (p.Pro869Ser) change in the MED13L gene and review of the literature for MED13L-related intellectual disability. Ital J Pediatr. 2020;46:95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woods CG, Stricker S, Seemann P, Stern R, Cox J, Sherridan E, et al. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome. Am J Hum Genet. 2006;79:402–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garavelli L, Wischmeijer A, Rosato S, Gelmini C, Reverberi S, Sassi S, et al. Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome and WNT7A mutations: genetic homogeneity and nosological delineation. Am J Med Genet A. 2011;155A:332–6.

    PubMed 

    Google Scholar
     

  • Eyaid W, Al-Qattan MM, Al Abdulkareem I, Fetaini N, Al Balwi M. A novel homozygous missense mutation (c.610G>A, p.Gly204Ser) in the WNT7A gene causes tetra-amelia in two Saudi families. Am J Med Genet A. 2011;155A:599–604.

    PubMed 

    Google Scholar