Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).
Mayo-Muñoz, D., Pinilla-Redondo, R., Camara-Wilpert, S., Birkholz, N. & Fineran, P. C. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat. Rev. Genet. 25, 237–254 (2024).
Sturino, J. M. & Klaenhammer, T. R. Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Appl. Environ. Microbiol. 68, 588–596 (2002).
Sprenger, M., Siemers, M., Krautwurst, S. & Papenfort, K. Small RNAs direct attack and defense mechanisms in a quorum sensing phage and its host. Cell Host Microbe 32, 727–738.e6 (2024).
McDonnell, B., Mahony, J., Hanemaaijer, L., Kouwen, T. R. H. M. & van Sinderen, D. Generation of bacteriophage-insensitive mutants of Streptococcus thermophilus via an antisense RNA CRISPR–Cas silencing approach. Appl. Environ. Microbiol. 84, e01733–17 (2018).
Piya, D. et al. Systematic and scalable genome-wide essentiality mapping to identify nonessential genes in phages. PLoS Biol. 21, e3002416 (2023).
Adler, B. A. et al. CRISPRi-ART enables functional genomics of diverse bacteriophages using RNA-binding dCas13d. Nat. Microbiol. 10, 694–709 (2025).
Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013).
Camara-Wilpert, S. et al. Bacteriophages suppress CRISPR–Cas immunity using RNA-based anti-CRISPRs. Nature 623, 601–607 (2023).
Chan, B. K. et al. Personalized inhaled bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa in cystic fibrosis. Nat. Med. 31, 1494–1501 (2025).
Antonova, D. et al. Genomic transfer via membrane vesicle: a strategy of giant phage phiKZ for early infection. J. Virol. 98, e0020524 (2024).
Mozumdar, D. et al. Characterization of a lipid-based jumbo phage compartment as a hub for early phage infection. Cell Host Microbe 32, 1050–1058.e7 (2024).
Armbruster, E. G. et al. Sequential membrane- and protein-bound organelles compartmentalize genomes during phage infection. Cell Host Microbe 33, 484–497.e6 (2025).
Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017).
Antonova, D. et al. The dynamics of synthesis and localization of jumbo phage RNA polymerases inside infected cells. Viruses 15, 2096 (2023).
Laughlin, T. G. et al. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. Nature 608, 429–435 (2022).
Nieweglowska, E. S. et al. The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice. Nat. Commun. 14, 927 (2023).
Morgan, C. J. et al. An essential and highly selective protein import pathway encoded by nucleus-forming phage. Proc. Natl Acad. Sci. USA 121, e2321190121 (2024).
Kokontis, C., Klein, T. A., Silas, S. & Bondy-Denomy, J. Multi-interface licensing of protein import into a phage nucleus. Nature 639, 456–462 (2025).
Kraemer, J. A. et al. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 149, 1488–1499 (2012).
Chaikeeratisak, V. et al. Viral capsid trafficking along treadmilling tubulin filaments in bacteria. Cell 177, 1771–1780.e12 (2019).
Mesyanzhinov, V. V. et al. The genome of bacteriophage φKZ of Pseudomonas aeruginosa. J. Mol. Biol. 317, 1–19 (2002).
Malone, L. M. et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5, 48–55 (2020).
Mendoza, S. D. et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577, 244–248 (2020).
Vogel, J. et al. ASOBIOTICS 2024: an interdisciplinary symposium on antisense-based programmable RNA antibiotics. RNA 31, 465–474 (2025).
Good, L. & Nielsen, P. E. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechnol. 16, 355–358 (1998).
Ghosal, A. & Nielsen, P. E. Potent antibacterial antisense peptide–peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acid Ther. 22, 323–334 (2012).
Howard, J. J. et al. Inhibition of Pseudomonas aeruginosa by peptide-conjugated phosphorodiamidate morpholino oligomers. Antimicrob. Agents Chemother. 61, e01938–16 (2017).
Guan, J. et al. Bacteriophage genome engineering with CRISPR–Cas13a. Nat. Microbiol. 7, 1956–1966 (2022).
Popella, L. et al. Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics. Nucleic Acids Res. 49, 4705–4724 (2021).
Popella, L. et al. Comprehensive analysis of PNA-based antisense antibiotics targeting various essential genes in uropathogenic Escherichia coli. Nucleic Acids Res. 50, 6435–6452 (2022).
Hör, J., Jung, J., Ðurica-Mitić, S., Barquist, L. & Vogel, J. INRI-seq enables global cell-free analysis of translation initiation and off-target effects of antisense inhibitors. Nucleic Acids Res. 50, e128 (2022).
Ghosh, C. et al. A comparative analysis of peptide-delivered antisense antibiotics employing diverse nucleotide mimics. RNA 30, 624–643 (2024).
Jung, J. et al. Design and off-target prediction for antisense oligomers targeting bacterial mRNAs with the MASON web server. RNA 29, 570–583 (2023).
Pankratz, D. et al. An expanded CRISPR–Cas9-assisted recombineering toolkit for engineering genetically intractable Pseudomonas aeruginosa isolates. Nat. Protoc. 18, 3253–3288 (2023).
Yuping, L. et al. Jumbo phage killer immune system targets early infection of nucleus-forming phages. Cell 188, 2127–2140 (2025).
Gerovac, M. et al. Phage proteins target and co-opt host ribosomes immediately upon infection. Nat. Microbiol. 9, 787–800 (2024).
Prichard, A. et al. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY. Cell Rep. 42, 112432 (2023).
Hör, J. Advancing RNA phage biology through meta-omics. Nucleic Acids Res. 53, gkaf314 (2025).
De Smet, J., Hendrix, H., Blasdel, B. G., Danis-Wlodarczyk, K. & Lavigne, R. Pseudomonas predators: understanding and exploiting phage–host interactions. Nat. Rev. Microbiol. 15, 517–530 (2017).
Iyer, L. M., Anantharaman, V., Krishnan, A., Burroughs, A. M. & Aravind, L. Jumbo phages: a comparative genomic overview of core functions and adaptions for biological conflicts. Viruses 13, 63 (2021).
Briers, Y. et al. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol. Microbiol. 65, 1334–1344 (2007).
Thomas, J. A. et al. Identification of essential genes in the Salmonella phage SPN3US reveals novel insights into giant phage head structure and assembly. J. Virol. 90, 10284–10298 (2016).
Ceyssens, P.-J. et al. Development of giant bacteriophage ΦKZ is independent of the host transcription apparatus. J. Virol. 88, 10501–10510 (2014).
Knezevic, P., Voet, M. & Lavigne, R. Prevalence of Pf1-like (pro)phage genetic elements among Pseudomonas aeruginosa isolates. Virology 483, 64–71 (2015).
Westermann, A. J. et al. Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature 529, 496–501 (2016).
Putzeys, L. et al. Exploring the transcriptional landscape of phage–host interactions using novel high-throughput approaches. Curr. Opin. Microbiol. 77, 102419 (2024).
Danilova, Y. A. et al. Maturation of pseudo-nucleus compartment in P. aeruginosa, infected with giant phiKZ phage. Viruses 12, 1197 (2020).
Putzeys, L. et al. Refining the transcriptional landscapes for distinct clades of virulent phages infecting Pseudomonas aeruginosa. microLife 5, uqae002 (2024).
Cheng, X., Wang, W. & Molineux, I. J. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326, 340–352 (2004).
Bondy-Denomy, J. et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10, 2854–2866 (2016).
Li, Kewei et al. SuhB is a regulator of multiple virulence genes and essential for pathogenesis of Pseudomonas aeruginosa. MBio 4, e00419–13 (2013).
Petrova, O. E., Schurr, J. R., Schurr, M. J. & Sauer, K. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol. Microbiol. 81, 767–783 (2011).
Altuvia, S., Storz, G. & Papenfort, K. Cross-regulation between bacteria and phages at a posttranscriptional level. Microbiol. Spectrum https://doi.org/10.1128/microbiolspec.rwr-0027-2018 (2018).
Lee, B. D. et al. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell 186, 646–661.e4 (2023).
Zheludev, I. N. et al. Viroid-like colonists of human microbiomes. Cell 187, 6521–6536.e18 (2024).
Moelling, K., Broecker, F., Russo, G. & Sunagawa, S. RNase H as gene modifier, driver of evolution and antiviral defense. Front. Microbiol. 8, 1745 (2017).
Hobbs, L. J. & Nossal, N. G. Either bacteriophage T4 RNase H or Escherichia coli DNA polymerase I is essential for phage replication. J. Bacteriol. 178, 6772–6777 (1996).
Birkholz, E. A. et al. An intron endonuclease facilitates interference competition between coinfecting viruses. Science 385, 105–112 (2024).
Ebbensgaard, A., Mordhorst, H., Aarestrup, F. M. & Hansen, E. B. The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides. Front. Microbiol. 9, 2153 (2018).
Skinner, S. O., Sepúlveda, L. A., Xu, H. & Golding, I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat. Protoc. 8, 1100–1113 (2013).
Alpers, K. et al. Transcriptome dynamics of Pseudomonas aeruginosa during transition from overlapping to non-overlapping cell cycles. mSystems 8, e0113022 (2023).
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
Stead, M. B. et al. RNAsnapTM: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria. Nucleic Acids Res. 40, e156 (2012).
Förstner, K. U., Vogel, J. & Sharma, C. M. READemption—a tool for the computational analysis of deep-sequencing–based transcriptome data. Bioinformatics 30, 3421–3423 (2014).
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, D991–D995 (2013).
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
Gerovac, M. & Vogel, J. Source Files for Gerovac et al. 2025. Zenodo https://doi.org/10.5281/zenodo.16357062 (2025).