• Anderson, G. S. & VanLaerhoven, S. L. Initial studies on insect succession on carrion in southwestern British Columbia. J. Forensic Sci. 41(4), 617–625 (1996).

    Article 

    Google Scholar
     

  • Amendt, J., Krettek, R. & Zehner, R. Forensic entomology. Naturwissenschaften 91(2), 51–65 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Byrd, J. H. & Tomberlin, J. K. Forensic entomology: The utility of arthropods in legal investigations 3rd edn. (CRC Press, Taylor & Francis Group, 2020).


    Google Scholar
     

  • Sadek, A. & Khan, N. T. Now a day’s forensic entomology is considered as important tool in medico-legal cases. GSC Biol. Pharm. Sci. 5(1), 043–049 (2018).

    Article 

    Google Scholar
     

  • Smith, K. G. V. A manual of forensic entomology (Cornell University Press, 1986).


    Google Scholar
     

  • Sperling, F. A., Anderson, G. S. & Hickey, D. A. A DNA-based approach to the identification of insect species used for postmortem interval estimation. J. Forensic Sci. 39(2), 418–427 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ratcliffe, S. T. et al. PCR-RFLP identification of Diptera (Calliphoridae, Muscidae and Sarcophagidae)–a generally applicable method. J. Forensic Sci. 48(4), 783–785 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Picard, C. J., Villet, M. H. & Wells, J. D. Amplified fragment length polymorphism confirms reciprocal monophyly in Chrysomya putoria and Chrysomya chloropyga: A correction of reported shared mtDNA haplotypes. Med. Vet. Entomol. 26(1), 116–119 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macleod, J. & Donnelly, J. Some ecological relationships of natural populations of Calliphorine blowflies. J. Anim. Ecol. 26, 135–170 (1957).

    Article 

    Google Scholar
     

  • Macleod, J. & Donnelly, J. Local distribution and dispersal paths of blow flies in hill country. J. Anim. Ecol. 27, 349–374 (1958).

    Article 

    Google Scholar
     

  • Macleod, J. & Donnelly, J. Microgeographic aggregations in blowfly populations. J. Anim. Ecol. 31, 525–543 (1962).

    Article 

    Google Scholar
     

  • Norris, K. B. The bionomics of blow flies. Ann. Rev. Entomol. 10, 47–68 (1965).

    Article 

    Google Scholar
     

  • Picard, C. J. & Wells, J. D. Survey of the genetic diversity of Phormia regina (Diptera: Calliphoridae) using amplified fragment length polymorphisms. J. Med. Entomol. 46(3), 664–670 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Picard, C. J. & Wells, J. D. The population genetic structure of North American Lucilia sericata (Diptera: Calliphoridae), and the utility of genetic assignment methods for reconstruction of postmortem corpse relocation. Forensic Sci. Int. 195(1–3), 63–67 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallagher, M. B., Sandhu, S. & Kimsey, R. Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J. Forensic Sci. 55(2), 438–442 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tarone, A. M. et al. Population and temperature effects on Lucilia sericata (Diptera: Calliphoridae) body size and minimum development time. J. Med. Entomol. 48(5), 1062–1068 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owings, C. G. et al. Developmental variation among Cochliomyia macellaria fabricius (Diptera: Calliphoridae) populations from three ecoregions of Texas, USA. Int. J. Legal Med. 128(4), 709–717 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lewis, S. E. The genomics of development rate variation in Cochliomyia macellaria (Diptera: Calliphoridae) (Purdue University, 2018).


    Google Scholar
     

  • Picard, C. J. Analysis of carrion fly (Diptera: Calliphoridae) population genetics using amplified fragment length polymorphism (AFLP) profiles. In Department of Biology. p. 122 (West Virginia University: Morgantown, 2010).

  • Bao, F. & Wells, J. D. Population genetic structure of an invasive forensically important insect. Electrophoresis 35, 3193–3200 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wasser, S. K. et al. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc. Natl. Acad. Sci. USA 101(41), 14847–14852 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Riek, J. et al. Assignment tests for variety identification compared to genetic similarity-based methods using experimental dataset from different marker systems in sugar beet. Crop. Sci. 47, 1964–1974 (2007).

    Article 

    Google Scholar
     

  • Bernatchez, L. & Duchesne, P. Individual-based genotype analysis in studies of parentage and population assignment: How many loci, how many alleles?. Can. J. Fisheries Aquatic Sci. 57(1), 1–12 (2000).

    Article 

    Google Scholar
     

  • Vekemans, X. et al. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol. Ecol. 11(1), 139–151 (2002).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorenbosch, M. et al. Population structure of the Dory snapper, Lutjanus fulviflamma, in the western Indian Ocean revealed by means of AFLP fingerprinting. Hydrobiologia 568, 43–53 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moreira, B., Castellanos, M. C. & Pausas, J. Genetic component of flammability variation in a Mediterranean shrub. Mol. Ecol. 23(5), 1213–1223 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonin, A., Ehrich, D. & Manel, S. Statistical analysis of amplified fragment length polymorphism data: A toolbox for molecular ecologists and evolutionists. Mol. Ecol. 16(18), 3737–3758 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Excoffier, L., Smouse, P. E. & Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131(2), 479–491 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, G. et al. Population genetics of the yellow fever mosquito in Trinidad: Comparisons of amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. Mol. Ecol. 8(6), 951–963 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peakall, R. & Smouse, P. E. Genalex 6: Genetics analysis in Excel. Population genetics software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).

    Article 

    Google Scholar
     

  • Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7(4), 574–578 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14(8), 2611–2620 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Article 

    Google Scholar
     

  • Lynch, M. & Milligan, B. G. Analysis of population genetic-structure with Rapd markers. Mol. Ecol. 3(2), 91–99 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hardy, O. J. & Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).

    Article 

    Google Scholar
     

  • Hardy, O. J. Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol. Ecol. 12(6), 1577–1588 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Duchesne, P. & Bernatchez, L. AFLPOP: A computer program for simulated and real population allocation, based on AFLP data. Mol. Ecol. Notes 2(3), 380–383 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Vivian, L. A. et al. Current known range of the Platte River caddisfly, Ironoquia plattensis, and genetic variability among populations from three Nebraska Rivers. J. Insect Conserv. 17, 885–895 (2013).

    Article 

    Google Scholar
     

  • Parsons, Y. M. & Shaw, K. Species boundaries and genetic diversity among Hawaiian crickets of the genus Laupala identified using amplified fragment length polymorphism. Mol. Ecol. 10(7), 1765–1772 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimnoch-Guzowska, E. et al. QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RFLP, and resistance-gene-like markers. Crop Sci. 40(4), 1156–1167 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, P. et al. Molecular fingerprinting and assessment of genetic variations among advanced breeding lines of Moringa oleifera L. by using seed protein, RAPD and Cytochrome P450 based markers. South Afr. J. Botany 111, 60–67 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Alvarez-Perez, S., Blanco, J. L. & García, M. E. Clostridium perfringens type A isolates of animal origin with decreased susceptibility to metronidazole show extensive genetic diversity. Microbial. Drug Res. 23(8), 1053–1058 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Napora-Rutkowski, Ł et al. Genetic diversity of common carp (Cyprinus carpio L.) strains breed in Poland based on microsatellite, AFLP, and mtDNA genotype data. Aquaculture 473, 433–442 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gerber, S. et al. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol. Ecol. 9(8), 1037–1048 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helsen, K. et al. A direct assessment of realized seed and pollen flow within and between two isolated populations of the food-deceptive orchid Orchis mascula. Plant Biol. 18(1), 139–146 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, C. et al. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3, 381–390 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Mueller, U. G. & Wolfenbarger, L. L. AFLP genotyping and fingerprinting. Trends Ecol. Evolut. 14(10), 389–394 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Farncombe, K. M., Beresford, D. & Kyle, C. J. Characterization of microsatellite loci in Phormia regina towards expanding molecular applications in forensic entomology. Forensic Sci. Int. 240, 112 (2014).

    Article 

    Google Scholar
     

  • Chong, Y. V., Chua, T. H. & Song, B.K. Genetic variations of Chrysomya megacephala populations in Malaysia (Diptera: Calliphoridae). Adv. Entomol., 2014, (2014).

  • Feitosa, M. A. C. et al. Diversity of sand flies in domiciliary environment of Santarém, state of Pará, Brazil: Species composition and abundance patterns in rural and urban areas. Acta Amazônica 42, 507–514 (2012).

    Article 

    Google Scholar
     

  • Chaves, L. F. et al. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 2(6), 1–21 (2011).

    Article 

    Google Scholar
     

  • Vandergast, A. G. et al. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16(5), 977–992 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butterworth, N. J. et al. The blowfly Chrysomya latifrons inhabits fragmented rainforests, but shows no population structure. Oecologia 201(3), 703–719 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evanno, G., Castella, E., Antoine, C., Paillat, G. & Goudet, J. Parallel changes in genetic diversity and species diversity following a natural disturbance. Mol. Ecol. 18(6), 1137–1144 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Glover, K. A. et al. Three decades of farmed escapees in the wild: A spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One 7(8), e43129 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gleeson, D. M. & Heath, A. C. G. The population biology of the Australian sheep blowfly, Lucilia cuprina, in New Zealand. New Zealand J. Agric. Re. 40(4), 529–535 (1997).

    Article 

    Google Scholar
     

  • Stevens, J. R. & Wall, R. Genetic variation in populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae) Random amplified polymorphic DNA analysis and mitochondrial DNA sequencing. Biochem. Syst. Ecol. 26, 81–97 (1997).

    Article 

    Google Scholar
     

  • Yin, C. & Stoffolano, J. G. Juvenile hormone regulation of reproduction in the cyclorrhaphous Diptera with emphasis on oogenesis. Archiv. Insect Biochem. Physiol. 35, 513–537 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Archambeault, A. D. Population structure of Lucilia mexicana Macquart 1843 (Diptera: Calliphoridae) in Texas with a discussion of colonization and genetics (Sam Houston State University, 2012).


    Google Scholar
     

  • Whale, J. W. Population genetic analysis of the black blow fly Phormia regina (Meigen) (Diptera: Calliphoridae) (Purdue University, 2015).


    Google Scholar
     

  • Campobasso, C. P. et al. Forensic genetic analysis of insect gut contents. Am. J. Forensic Med. Pathol. 26(2), 161–165 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Njau, D. G. et al. STR analysis of human DNA from maggots fed on decomposing bodies: Assessment of the time period for successful analysis. Egypt. J. Forensic Sci. 6(3), 261–269 (2016).

    Article 

    Google Scholar