• Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012 (2020).

    Article 

    Google Scholar
     

  • Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Malia, B. K., Wu, Y., Martínez-Rincón, J. & Kasevich, M. A. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature 612, 661–665 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article 

    Google Scholar
     

  • Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Fitzsimons, J. F. Private quantum computation: an introduction to blind quantum computing and related protocols. npj Quantum Inf. 3, 23 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article 
    ADS 

    Google Scholar
     

  • van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Krutyanskiy, V. et al. Telecom-wavelength quantum repeater node based on a trapped-ion processor. Phys. Rev. Lett. 130, 213601 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Uysal, M. T. et al. Spin-photon entanglement of a single Er3+ ion in the telecom band. Phys. Rev. X. 15, 011071 (2025).


    Google Scholar
     

  • Covey, J. P., Weinfurter, H. & Bernien, H. Quantum networks with neutral atom processing nodes. npj Quantum Inf. 9, 90 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ruskuc, A. et al. Multiplexed entanglement of multi-emitter quantum network nodes. Nature 639, 54–59 (2025).

    Article 

    Google Scholar
     

  • Stolk, A. et al. Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers. PRX Quantum 3, 020359 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bersin, E. et al. Telecom networking with a diamond quantum memory. PRX Quantum 5, 010303 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).

    Article 

    Google Scholar
     

  • Huie, W., Menon, S. G., Bernien, H. & Covey, J. P. Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities. Phys. Rev. Res. 3, 043154 (2021).

    Article 

    Google Scholar
     

  • Li, Y. & Thompson, J. D. High-rate and high-fidelity modular interconnects between neutral atom quantum processors. PRX Quantum 5, 020363 (2024).

    Article 

    Google Scholar
     

  • Canteri, M. et al. A photon-interfaced ten qubit quantum network node. Phys. Rev. Lett. 135, 080801 (2025).

    Article 

    Google Scholar
     

  • Hartung, L., Seubert, M., Welte, S., Distante, E. & Rempe, G. A quantum-network register assembled with optical tweezers in an optical cavity. Science 385, 179–183 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Trupke, M. et al. Atom detection and photon production in a scalable, open, optical microcavity. Phys. Rev. Lett. 99, 063601 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Derntl, C. et al. Arrays of open, independently tunable microcavities. Opt. Express 22, 22111–22120 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Menon, S. G., Glachman, N., Pompili, M., Dibos, A. & Bernien, H. An integrated atom array-nanophotonic chip platform with background-free imaging. Nat. Commun. 15, 6156 (2024).

    Article 

    Google Scholar
     

  • Shadmany, D. et al. Cavity QED in a high NA resonator. Sci. Adv. 11, eads8171 (2025).

    Article 

    Google Scholar
     

  • Sunami, S., Tamiya, S., Inoue, R., Yamasaki, H. & Goban, A. Scalable networking of neutral-atom qubits: nanofiber-based approach for multiprocessor fault-tolerant quantum computer. PRX Quantum 6, 010101 (2025).

    Article 

    Google Scholar
     

  • Huie, W. et al. Repetitive readout and real-time control of nuclear spin qubits in 171Yb atoms. PRX Quantum 4, 030337 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jenkins, A., Lis, J. W., Senoo, A., McGrew, W. F. & Kaufman, A. M. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X 12, 021027 (2022).


    Google Scholar
     

  • Morigi, G., Eschner, J. & Keitel, C. H. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458–4461 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Lis, J. W. et al. Midcircuit operations using the omg architecture in neutral atom arrays. Phys. Rev. X 13, 041035 (2023).


    Google Scholar
     

  • Barnes, K. et al. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun. 13, 2779 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chen, N. et al. Analyzing the Rydberg-based optical-metastable-ground architecture for 171Yb nuclear spins. Phys. Rev. A 105, 052438 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Peper, M. et al. Spectroscopy and modeling of 171Yb Rydberg states for high-fidelity two-qubit gates. Phys. Rev. X 15, 011009 (2025).


    Google Scholar
     

  • Muniz, J. A. et al. High-fidelity universal gates in the 171Yb ground state nuclear spin qubit. PRX Quantum 6, 020334 (2025).

    Article 

    Google Scholar
     

  • Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).

    Article 

    Google Scholar
     

  • Li, L., Huie, W., Chen, N., DeMarco, B. & Covey, J. P. Active cancellation of servo-induced noise on stabilized lasers via feedforward. Phys. Rev. Appl. 18, 064005 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Saha, S. et al. High-fidelity remote entanglement of trapped atoms mediated by time-bin photons. Nat. Commun. 16, 2533 (2025).

    Article 

    Google Scholar
     

  • Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).

    Article 

    Google Scholar
     

  • Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27, 35279–35289 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Oripov, B. G. et al. A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622, 730–734 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fleming, F. et al. High-efficiency, high-count-rate 2D superconducting nanowire single-photon detector array. Opt. Express 33, 27602–27614 (2025).

    Article 

    Google Scholar
     

  • Shaw, A. L. et al. Erasure cooling, control, and hyperentanglement of motion in optical tweezers. Science 388, 845–849 (2025).

    Article 
    MathSciNet 

    Google Scholar
     

  • Graham, T. M. et al. Mid-circuit measurements on a neutral atom quantum processor. Phys. Rev. X 13, 041051 (2023).


    Google Scholar
     

  • Singh, K. et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits. Science 380, 1265–1269 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, Y. et al. A hybrid atom tweezer array of nuclear spin and optical clock qubits. Phys. Rev. X 14, 041062 (2024).


    Google Scholar
     

  • Norcia, M. A. et al. Midcircuit qubit measurement and rearrangement in a 171Yb atomic array. Phys. Rev. X 13, 041034 (2023).


    Google Scholar
     

  • Hu, B. et al. Site-selective cavity readout and classical error correction of a 5-bit atomic register. Phys. Rev. Lett. 134, 120801 (2025).

    Article 

    Google Scholar
     

  • Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

  • Tang, Z.-M., Yu, Y.-M. & Dong, C.-Z. Determination of static dipole polarizabilities of Yb atom. Chinese Phys. B 27, 063101 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Norcia, M. A. et al. Iterative assembly of 17Yb atom arrays with cavity-enhanced optical lattices. PRX Quantum 5, 030316 (2024).

    Article 

    Google Scholar
     

  • Gyger, F. et al. Continuous operation of large-scale atom arrays in optical lattices. Phys. Rev. Res. 6, 033104 (2024).

    Article 

    Google Scholar
     

  • Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Peters, M. L. et al. Cavity-enabled real-time observation of individual atomic collisions. Preprint at https://arxiv.org/abs/2411.12622 (2024).

  • Grinkemeyer, B. et al. Error-detected quantum operations with neutral atoms mediated by an optical cavity. Science 387, 1301–1305 (2025).

    Article 
    MathSciNet 

    Google Scholar
     

  • Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pfister, C. et al. A universal test for gravitational decoherence. Nat. Commun. 7, 13022 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Borregaard, J. & Pikovski, I. Testing quantum theory on curved space-time with quantum networks. Phys. Rev. Research 7, 023192 (2025).

    Article 

    Google Scholar
     

  • Covey, J. P., Pikovski, I. & Borregaard, J. Probing curved spacetime with a distributed atomic processor clock. PRX Quantum 6, 030310 (2025).

    Article 

    Google Scholar
     

  • Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Cho, J. W. et al. Optical repumping of triplet-P states enhances magneto-optical trapping of ytterbium atoms. Phys. Rev. A 85, 035401 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Porsev, S. G., Rakhlina, Y. G. & Kozlov, M. G. Electric-dipole amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium. Phys. Rev. A 60, 2781–2785 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Scazza, F. Probing SU(N)-Symmetric Orbital Interactions with Ytterbium Fermi Gases in Optical Lattices. PhD thesis, LMU Munich (2015)

  • Bettermann, O. Interorbital Interactions in Ytterbium-171. PhD thesis, LMU Munich (2022).

  • Young, C. B. et al. An architecture for quantum networking of neutral atom processors. Appl. Phys. B 128, 151 (2022).

    Article 
    ADS 

    Google Scholar