Yang, C. N. in Selected Papers of Chen Ning Yang II, 78–92 (World Scientific, 2013).
Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. C. R. Phys. 19, 394–432 (2018).
Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).
Wu, T. T. & Yang, C. N. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975).
Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).
Lin, Y. J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).
Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).
Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). Experimental realizations of photonic Floquet topological insulators.
Fang, K. J. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).
Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).
Lee, C. H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). Introducing the concept of transformation optics, providing a blueprint for designing materials that can precisely control the path of electromagnetic fields.
Miri, M. A., Heinrich, M., El-Ganainy, R. & Christodoulides, D. N. Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). Comprehensive review of recent advances in topological photonics.
Zhang, X., Zangeneh-Nejad, F., Chen, Z.-G., Lu, M.-H. & Christensen, J. A second wave of topological phenomena in photonics and acoustics. Nature 618, 687–697 (2023).
Yang, Y. et al. Non-Abelian physics in light and sound. Science 383, 844 (2024).
Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).
Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).
Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
Yao, S. Y. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018). Extension of topological band theory to non-Hermitian system.
Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. A review on non-Hermitian skin effect. Adv. Phys.: X 7, 2109431 (2022).
Clark, L. W., Schine, N., Baum, C., Jia, N. Y. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).
Deng, J. F. et al. Observing the quantum topology of light. Science 378, 966–971 (2022). Experimental observation of quantum topological properties of light.
Huang, K. Fundamental Forces of Nature: The Story of Gauge Fields (World Scientific, 2007).
Bloch, F. Uber die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. A 52, 555–600 (1928).
Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145, 523–529 (1934).
Peschel, U., Pertsch, T. & Lederer, F. Optical Bloch oscillations in waveguide arrays. Opt. Lett. 23, 1701–1703 (1998).
Block, A. et al. Bloch oscillations in plasmonic waveguide arrays. Nat. Commun. 5, 3843 (2014).
Liu, W., Neshev, D. N., Miroshnichenko, A. E., Shadrivov, I. V. & Kivshar, Y. S. Bouncing plasmonic waves in half-parabolic potentials. Phys. Rev. A 84, 063805 (2011).
Levy, U. et al. Inhomogenous dielectric metamaterials with space-variant polarizability. Phys. Rev. Lett. 98, 243901 (2007).
Staliunas, K. & Masoller, C. Subdiffractive light in bi-periodic arrays of modulated fibers. Opt. Express 14, 10669–10677 (2006).
Pyrialakos, G. G. et al. Bimorphic Floquet topological insulators. Nat. Mater. 21, 634–639 (2022).
Hwang, M.-S., Kim, H.-R. & Park, H.-G. Topological manipulation for advancing nanophotonics. npj Nanophoton. 1, 32 (2024).
Peterson, C. W. et al. Trapped fractional charges at bulk defects in topological insulators. Nature 589, 376–380 (2021).
Liu, Y. et al. Bulk-disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021).
Hu, Z. et al. Topological orbital angular momentum extraction and twofold protection of vortex transport. Nat. Photon. 19, 162–169 (2025).
Yang, Z., Lustig, E., Lumer, Y. & Segev, M. Photonic Floquet topological insulators in a fractal lattice. Light Sci. Appl. 9, 128 (2020).
Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).
Miri, M. A., Heinrich, M. & Christodoulides, D. N. SUSY-inspired one-dimensional transformation optics. Optica 1, 89–95 (2014).
Yim, J. et al. Broadband continuous supersymmetric transformation: a new paradigm for transformation optics. eLight 2, 16 (2022).
Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623–626 (2019).
Heinrich, M. et al. Supersymmetric mode converters. Nat. Commun. 5, 3698 (2014).
Liu, X. et al. Perfect excitation of topological states by supersymmetric waveguides. Phys. Rev. Lett. 132, 016601 (2024).
Vonklitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
Rechtsman, M. C. et al. Strain induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013).
Yang, Z., Gao, F., Yang, Y. & Zhang, B. Strain-induced gauge field and Landau levels in acoustic structures. Phys. Rev. Lett. 118, 194301 (2017).
Huang, Z. T. et al. Pattern-tunable synthetic gauge fields in topological photonic graphene. Nanophotonics 11, 1297–1308 (2022).
Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).
Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).
Dong, J. W., Chen, X. D., Zhu, H. Y., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).
Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).
Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).
Luo, H. K. et al. Guiding Trojan light beams via Lagrange points. Nat. Phys. 20, 95–100 (2024).
Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).
Yu, D. et al. Comprehensive review on developments of synthetic dimensions. Photon. Insights 4, R06–R06 (2025).
Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741 (2016).
Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).
Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).
Luo, X. W. et al. Synthetic lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun. 8, 16097 (2017).
Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020). Exploration of higher-dimensional physics using synthetic dimensions.
Citro, R. & Aidelsburger, M. Thouless pumping and topology. Nat. Rev. Phys. 5, 87–101 (2023).
Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).
Wang, Q., Xiao, M., Liu, H., Zhu, S. N. & Chan, C. T. Optical interface states protected by synthetic Weyl points. Phys. Rev. X 7, 031032 (2017).
Song, W. et al. Bound-extended mode transition in type-II synthetic photonic Weyl heterostructures. Phys. Rev. Lett. 132, 143801 (2024).
Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).
Ma, S. et al. Linked Weyl surfaces and Weyl arcs in photonic metamaterials. Science 373, 572–576 (2021).
Yang, Y. et al. Demonstration of negative refraction induced by synthetic gauge fields. Sci. Adv. 7, eabj2062 (2021).
Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photon. 13, 339–345 (2019). Illustrating how artificial gauge fields can be used to control light in photonic structures.
Pilozzi, L., Leykam, D., Chen, Z. & Conti, C. Topological photonic crystal fibers and ring resonators. Opt. Lett. 45, 1415–1418 (2020).
Zhu, B. et al. Topological photonic crystal fibre. Preprint at https://arxiv.org/abs/2501.15107 (2025).
Niu, Q. et al. Realization of a Dirac-vortex topological photonic crystal fiber. Preprint at https://arxiv.org/abs/2503.04194 (2025).
Song, W. et al. Subwavelength self-imaging in cascaded waveguide arrays. Adv. Photon. 2, 036001 (2020).
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).
Ye, H. et al. Reconfigurable refraction manipulation at synthetic temporal interfaces with scalar and vector gauge potentials. Proc. Natl Acad. Sci. USA 120, e2300860120 (2023).
Wang, S. L. et al. High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices. Nat. Commun. 13, 7653 (2022).
Wang, S. et al. Photonic Floquet Landau–Zener tunneling and temporal beam splitters. Sci. Adv. 9, eadh0415 (2023).
Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019). Realizing the synthesis and observation of non-Abelian gauge fields in real space.
Arnold, V. Lectures and Problems: A Gift to Young Mathematicians (American Math Society (translated from Russian), 2015).
Yang, C. N. & Mills, R. L. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954).
Chen, Y. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 3125 (2019).
Polimeno, L. et al. Experimental investigation of a non-Abelian gauge field in 2D perovskite photonic platform. Optica 8, 1442–1447 (2021).
Lovett, S. et al. Observation of Zitterbewegung in photonic microcavities. Light Sci. Appl. 12, 126 (2023).
Ye, W. et al. Photonic Hall effect and helical Zitterbewegung in a synthetic Weyl system. Light Sci. Appl. 8, 49 (2019).
Wu, J. et al. Non-Abelian gauge fields in circuit systems. Nat. Electron. 5, 635–642 (2022).
Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).
Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photon. 15, 193–196 (2021).
Brosco, V., Pilozzi, L., Fazio, R. & Conti, C. Non-Abelian Thouless pumping in a photonic lattice. Phys. Rev. A 103, 063518 (2021).
Yan, Q. et al. Non-Abelian gauge field in optics. Adv. Opt. Photon. 15, 907–976 (2023).
Cheng, D. L., Wang, K. & Fan, S. H. Artificial non-Abelian lattice gauge fields for photons in the synthetic frequency dimension. Phys. Rev. Lett. 130, 083601 (2023).
Cheng, D. et al. Non-Abelian lattice gauge fields in photonic synthetic frequency dimensions. Nature 637, 52–56 (2025).
Wong, B. T. T., Yang, S., Pang, Z. & Yang, Y. Synthetic non-Abelian electric fields and spin–orbit coupling in photonic synthetic dimensions. Phys. Rev. Lett. 134, 163803 (2025).
Dong, Z. et al. Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov–Bohm interferences. Nat. Commun. 15, 7392 (2024).
Pang, Z., Abdelghani, O., Soljačić, M. & Yang, Y. Topological quantum walk in synthetic non-Abelian gauge fields. Preprint at https://arxiv.org/abs/2412.03043 (2024).
Pancharatnam, S. The propagation of light in absorbing biaxial crystals. Proc. Indian Acad. Sci. A 42, 86–109 (1955).
Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).
Li, A. D. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).
Ding, K., Fang, C. & Ma, G. C. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).
Wang, C. Q. et al. Non-Hermitian optics and photonics: from classical to quantum. Adv. Opt. Photon. 15, 442–523 (2023).
Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016). Encircling an exceptional point for asymmetric mode switching.
Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256–261 (2022).
Song, W. G. et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019).
Li, A. D. et al. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett. 125, 187403 (2020).
Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884–888 (2022).
Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).
Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).
Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).
Song, W. et al. Observation of Weyl interface states in non-Hermitian synthetic photonic systems. Phys. Rev. Lett. 130, 043803 (2023).
Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).
Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996).
Sun, C.-P. High-order adiabatic approximation for non-Hermitian quantum system and complexification of Berry’s phase. Phys. Scr. 48, 393 (1993).
Longhi, S., Gatti, D. & Valle, G. D. Non-Hermitian transparency and one-way transport in low dimensional lattices by an imaginary gauge field. Phys. Rev. B 92, 094204 (2015).
Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).
Zhang, K., Yang, Z. S. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).
Borgnia, D. S., Kruchkov, A. J. & Slager, R. J. Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).
Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020). Experimental realization of the non-Hermitian skin effect.
Xiao, L. et al. Non-Hermitian bulk boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).
Xin, H. R. et al. Manipulating the non-Hermitian skin effect in optical ring resonators. Phys. Rev. B 107, 165401 (2023).
Longhi, S. Non-Hermitian gauged topological laser arrays. Ann. Phys. 530, 1800023 (2018).
Teo, W. X., Zhu, W. W. & Gong, J. B. Tunable two-dimensional laser arrays with zero-phase locking. Phys. Rev. B 105, L201402 (2022).
Liu, Y. G. N. et al. Complex skin modes in non-Hermitian coupled laser arrays. Light Sci. Appl. 11, 336 (2022).
Gao, Z. H. et al. Two dimensional reconfigurable non-Hermitian gauged laser array. Phys. Rev. Lett. 130, 263801 (2023).
Yi, Y. F. & Yang, Z. S. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett. 125, 186802 (2020).
Lin, Z. K., Ding, L., Ke, S. L. & Li, X. Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators. Opt. Lett. 46, 3512–3515 (2021).
Li, Y., Lu, C., Zhang, S. & Liu, Y.-C. Loss-induced Floquet non-Hermitian skin effect. Phys. Rev. B 108, L220301 (2023).
Sun, Y. et al. Photonic Floquet skin-topological effect. Phys. Rev. Lett. 132, 063804 (2023).
Lin, Z. et al. Observation of topological transition in Floquet non-Hermitian skin effects in silicon photonics. Phys. Rev. Lett. 133, 073803 (2024).
Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).
Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).
Parto, M., Leefmans, C., Williams, J., Nori, F. & Marandi, A. Non-Abelian effects in dissipative photonic topological lattices. Nat. Commun. 14, 1440 (2023).
Pang, Z., Wong, B. T. T., Hu, J. & Yang, Y. Synthetic non-Abelian gauge fields for non-Hermitian systems. Phys. Rev. Lett. 132, 043804 (2024).
Shen, J. T. & Fan, S. H. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007).
Wang, C. et al. Realization of fractional quantum Hall state with interacting photons. Science 384, 579–584 (2024). Realizing the optical simulation of fractional quantum Hall physics.
Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).
Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic landau levels for photons. Nature 534, 671–675 (2016).
Corman, L. Light turned into exotic Laughlin matter. Nature 582, 37–38 (2020).
Lim, H. T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoglu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).
Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).
Ke, Y. G., Poshakinskiy, A. V., Lee, C. H., Kivshar, Y. S. & Poddubny, A. N. Inelastic scattering of photon pairs in qubit arrays with subradiant states. Phys. Rev. Lett. 123, 253601 (2019).
Ke, Y. G., Huang, J. X., Liu, W. J., Kivshar, Y. S. & Lee, C. H. Topological inverse band theory in waveguide quantum electrodynamics. Phys. Rev. Lett. 131, 103604 (2023).
Ke, Y. G. et al. Radiative topological biphoton states in modulated qubit arrays. Phys. Rev. Res. 2, 033190 (2020).
Poshakinskiy, A. V. et al. Quantum Hall phases emerging from atom–photon interactions. npj Quantum Inf. 7, 3435 (2021).
Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).
Walter, A.-S. et al. Quantization and its breakdown in a Hubbard–Thouless pump. Nat. Phys. 19, 1471–1475 (2023).
Ke, Y. & Lee, C. Topological quantum tango. Nat. Phys. 19, 1387–1388 (2023).
Song, W. et al. Dispersionless coupling among optical waveguides by artificial gauge field. Phys. Rev. Lett. 129, 053901 (2022). Introducing artificial gauge fields into photonic chips for broadband optical coupling.
Feng, X. et al. Non-Hermitian hybrid silicon photonic switching. Nat. Photon. 19, 264–270 (2025).
Dai, T. et al. A programmable topological photonic chip. Nat. Mater. 23, 928–936 (2024).
Lin, Z. et al. Ultrabroadband low-crosstalk dense lithium niobate waveguides by Floquet engineering. Phys. Rev. Appl. 20, 054005 (2023).
Zhao, W. et al. Landau rainbow induced by artificial gauge fields. Phys. Rev. Lett. 133, 233801 (2024).
Descheemaeker, L., Ginis, V., Viaene, S. & Tassin, P. Optical force enhancement using an imaginary vector potential for photons. Phys. Rev. Lett. 119, 137402 (2017).
Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).
Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).
Tambasco, J.-L. et al. Quantum interference of topological states of light. Sci. Adv. 4, 3187 (2018).
Wang, Z. et al. Artificial-gauge-field-based inverse design for wideband-flat power splitter and microring resonator. Adv. Photon. Nexus 4, 016001 (2025).
Pilozzi, L., Farrelly, F. A., Marcucci, G. & Conti, C. Machine learning inverse problem for topological photonics. Commun. Phys. 1, 57 (2018).
Xia, S. et al. Deep-learning-empowered synthetic dimension dynamics: morphing of light into topological modes. Adv. Photon. 6, 026005 (2024).