• Yang, C. N. in Selected Papers of Chen Ning Yang II, 78–92 (World Scientific, 2013).

  • Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. C. R. Phys. 19, 394–432 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wu, T. T. & Yang, C. N. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Y. J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). Experimental realizations of photonic Floquet topological insulators.

    Article 
    ADS 

    Google Scholar
     

  • Fang, K. J. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article 

    Google Scholar
     

  • Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

    Article 

    Google Scholar
     

  • Lee, C. H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).

    Article 

    Google Scholar
     

  • Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). Introducing the concept of transformation optics, providing a blueprint for designing materials that can precisely control the path of electromagnetic fields.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Miri, M. A., Heinrich, M., El-Ganainy, R. & Christodoulides, D. N. Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). Comprehensive review of recent advances in topological photonics.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhang, X., Zangeneh-Nejad, F., Chen, Z.-G., Lu, M.-H. & Christensen, J. A second wave of topological phenomena in photonics and acoustics. Nature 618, 687–697 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y. et al. Non-Abelian physics in light and sound. Science 383, 844 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    Article 
    ADS 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article 

    Google Scholar
     

  • Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Yao, S. Y. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018). Extension of topological band theory to non-Hermitian system.

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. A review on non-Hermitian skin effect. Adv. Phys.: X 7, 2109431 (2022).


    Google Scholar
     

  • Clark, L. W., Schine, N., Baum, C., Jia, N. Y. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Deng, J. F. et al. Observing the quantum topology of light. Science 378, 966–971 (2022). Experimental observation of quantum topological properties of light.

    Article 
    ADS 

    Google Scholar
     

  • Huang, K. Fundamental Forces of Nature: The Story of Gauge Fields (World Scientific, 2007).

  • Bloch, F. Uber die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. A 52, 555–600 (1928).

    Article 

    Google Scholar
     

  • Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145, 523–529 (1934).

    Article 
    ADS 

    Google Scholar
     

  • Peschel, U., Pertsch, T. & Lederer, F. Optical Bloch oscillations in waveguide arrays. Opt. Lett. 23, 1701–1703 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Block, A. et al. Bloch oscillations in plasmonic waveguide arrays. Nat. Commun. 5, 3843 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liu, W., Neshev, D. N., Miroshnichenko, A. E., Shadrivov, I. V. & Kivshar, Y. S. Bouncing plasmonic waves in half-parabolic potentials. Phys. Rev. A 84, 063805 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Levy, U. et al. Inhomogenous dielectric metamaterials with space-variant polarizability. Phys. Rev. Lett. 98, 243901 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Staliunas, K. & Masoller, C. Subdiffractive light in bi-periodic arrays of modulated fibers. Opt. Express 14, 10669–10677 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Pyrialakos, G. G. et al. Bimorphic Floquet topological insulators. Nat. Mater. 21, 634–639 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hwang, M.-S., Kim, H.-R. & Park, H.-G. Topological manipulation for advancing nanophotonics. npj Nanophoton. 1, 32 (2024).

    Article 

    Google Scholar
     

  • Peterson, C. W. et al. Trapped fractional charges at bulk defects in topological insulators. Nature 589, 376–380 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Y. et al. Bulk-disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Z. et al. Topological orbital angular momentum extraction and twofold protection of vortex transport. Nat. Photon. 19, 162–169 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Z., Lustig, E., Lumer, Y. & Segev, M. Photonic Floquet topological insulators in a fractal lattice. Light Sci. Appl. 9, 128 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Miri, M. A., Heinrich, M. & Christodoulides, D. N. SUSY-inspired one-dimensional transformation optics. Optica 1, 89–95 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yim, J. et al. Broadband continuous supersymmetric transformation: a new paradigm for transformation optics. eLight 2, 16 (2022).

    Article 

    Google Scholar
     

  • Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623–626 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Heinrich, M. et al. Supersymmetric mode converters. Nat. Commun. 5, 3698 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Perfect excitation of topological states by supersymmetric waveguides. Phys. Rev. Lett. 132, 016601 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Vonklitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Rechtsman, M. C. et al. Strain induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Z., Gao, F., Yang, Y. & Zhang, B. Strain-induced gauge field and Landau levels in acoustic structures. Phys. Rev. Lett. 118, 194301 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Z. T. et al. Pattern-tunable synthetic gauge fields in topological photonic graphene. Nanophotonics 11, 1297–1308 (2022).

    Article 

    Google Scholar
     

  • Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dong, J. W., Chen, X. D., Zhu, H. Y., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).

    Article 

    Google Scholar
     

  • Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Luo, H. K. et al. Guiding Trojan light beams via Lagrange points. Nat. Phys. 20, 95–100 (2024).

    Article 

    Google Scholar
     

  • Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yu, D. et al. Comprehensive review on developments of synthetic dimensions. Photon. Insights 4, R06–R06 (2025).

    Article 

    Google Scholar
     

  • Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

    Article 

    Google Scholar
     

  • Luo, X. W. et al. Synthetic lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun. 8, 16097 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020). Exploration of higher-dimensional physics using synthetic dimensions.

    Article 
    ADS 

    Google Scholar
     

  • Citro, R. & Aidelsburger, M. Thouless pumping and topology. Nat. Rev. Phys. 5, 87–101 (2023).

    Article 

    Google Scholar
     

  • Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Q., Xiao, M., Liu, H., Zhu, S. N. & Chan, C. T. Optical interface states protected by synthetic Weyl points. Phys. Rev. X 7, 031032 (2017).


    Google Scholar
     

  • Song, W. et al. Bound-extended mode transition in type-II synthetic photonic Weyl heterostructures. Phys. Rev. Lett. 132, 143801 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ma, S. et al. Linked Weyl surfaces and Weyl arcs in photonic metamaterials. Science 373, 572–576 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y. et al. Demonstration of negative refraction induced by synthetic gauge fields. Sci. Adv. 7, eabj2062 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photon. 13, 339–345 (2019). Illustrating how artificial gauge fields can be used to control light in photonic structures.

    Article 
    ADS 

    Google Scholar
     

  • Pilozzi, L., Leykam, D., Chen, Z. & Conti, C. Topological photonic crystal fibers and ring resonators. Opt. Lett. 45, 1415–1418 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, B. et al. Topological photonic crystal fibre. Preprint at https://arxiv.org/abs/2501.15107 (2025).

  • Niu, Q. et al. Realization of a Dirac-vortex topological photonic crystal fiber. Preprint at https://arxiv.org/abs/2503.04194 (2025).

  • Song, W. et al. Subwavelength self-imaging in cascaded waveguide arrays. Adv. Photon. 2, 036001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Ye, H. et al. Reconfigurable refraction manipulation at synthetic temporal interfaces with scalar and vector gauge potentials. Proc. Natl Acad. Sci. USA 120, e2300860120 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wang, S. L. et al. High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices. Nat. Commun. 13, 7653 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, S. et al. Photonic Floquet Landau–Zener tunneling and temporal beam splitters. Sci. Adv. 9, eadh0415 (2023).

    Article 

    Google Scholar
     

  • Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019). Realizing the synthesis and observation of non-Abelian gauge fields in real space.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Arnold, V. Lectures and Problems: A Gift to Young Mathematicians (American Math Society (translated from Russian), 2015).

  • Yang, C. N. & Mills, R. L. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Chen, Y. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 3125 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Polimeno, L. et al. Experimental investigation of a non-Abelian gauge field in 2D perovskite photonic platform. Optica 8, 1442–1447 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lovett, S. et al. Observation of Zitterbewegung in photonic microcavities. Light Sci. Appl. 12, 126 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ye, W. et al. Photonic Hall effect and helical Zitterbewegung in a synthetic Weyl system. Light Sci. Appl. 8, 49 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wu, J. et al. Non-Abelian gauge fields in circuit systems. Nat. Electron. 5, 635–642 (2022).

    Article 

    Google Scholar
     

  • Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photon. 15, 193–196 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Brosco, V., Pilozzi, L., Fazio, R. & Conti, C. Non-Abelian Thouless pumping in a photonic lattice. Phys. Rev. A 103, 063518 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Yan, Q. et al. Non-Abelian gauge field in optics. Adv. Opt. Photon. 15, 907–976 (2023).

    Article 

    Google Scholar
     

  • Cheng, D. L., Wang, K. & Fan, S. H. Artificial non-Abelian lattice gauge fields for photons in the synthetic frequency dimension. Phys. Rev. Lett. 130, 083601 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Cheng, D. et al. Non-Abelian lattice gauge fields in photonic synthetic frequency dimensions. Nature 637, 52–56 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Wong, B. T. T., Yang, S., Pang, Z. & Yang, Y. Synthetic non-Abelian electric fields and spin–orbit coupling in photonic synthetic dimensions. Phys. Rev. Lett. 134, 163803 (2025).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Dong, Z. et al. Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov–Bohm interferences. Nat. Commun. 15, 7392 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Pang, Z., Abdelghani, O., Soljačić, M. & Yang, Y. Topological quantum walk in synthetic non-Abelian gauge fields. Preprint at https://arxiv.org/abs/2412.03043 (2024).

  • Pancharatnam, S. The propagation of light in absorbing biaxial crystals. Proc. Indian Acad. Sci. A 42, 86–109 (1955).

    Article 

    Google Scholar
     

  • Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, A. D. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ding, K., Fang, C. & Ma, G. C. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Article 

    Google Scholar
     

  • Wang, C. Q. et al. Non-Hermitian optics and photonics: from classical to quantum. Adv. Opt. Photon. 15, 442–523 (2023).

    Article 

    Google Scholar
     

  • Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016). Encircling an exceptional point for asymmetric mode switching.

    Article 
    ADS 

    Google Scholar
     

  • Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256–261 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Song, W. G. et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, A. D. et al. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett. 125, 187403 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884–888 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Song, W. et al. Observation of Weyl interface states in non-Hermitian synthetic photonic systems. Phys. Rev. Lett. 130, 043803 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Sun, C.-P. High-order adiabatic approximation for non-Hermitian quantum system and complexification of Berry’s phase. Phys. Scr. 48, 393 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Longhi, S., Gatti, D. & Valle, G. D. Non-Hermitian transparency and one-way transport in low dimensional lattices by an imaginary gauge field. Phys. Rev. B 92, 094204 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhang, K., Yang, Z. S. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Borgnia, D. S., Kruchkov, A. J. & Slager, R. J. Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020). Experimental realization of the non-Hermitian skin effect.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Xiao, L. et al. Non-Hermitian bulk boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article 

    Google Scholar
     

  • Xin, H. R. et al. Manipulating the non-Hermitian skin effect in optical ring resonators. Phys. Rev. B 107, 165401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Longhi, S. Non-Hermitian gauged topological laser arrays. Ann. Phys. 530, 1800023 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Teo, W. X., Zhu, W. W. & Gong, J. B. Tunable two-dimensional laser arrays with zero-phase locking. Phys. Rev. B 105, L201402 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Y. G. N. et al. Complex skin modes in non-Hermitian coupled laser arrays. Light Sci. Appl. 11, 336 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gao, Z. H. et al. Two dimensional reconfigurable non-Hermitian gauged laser array. Phys. Rev. Lett. 130, 263801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yi, Y. F. & Yang, Z. S. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett. 125, 186802 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Lin, Z. K., Ding, L., Ke, S. L. & Li, X. Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators. Opt. Lett. 46, 3512–3515 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y., Lu, C., Zhang, S. & Liu, Y.-C. Loss-induced Floquet non-Hermitian skin effect. Phys. Rev. B 108, L220301 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Y. et al. Photonic Floquet skin-topological effect. Phys. Rev. Lett. 132, 063804 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Z. et al. Observation of topological transition in Floquet non-Hermitian skin effects in silicon photonics. Phys. Rev. Lett. 133, 073803 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Parto, M., Leefmans, C., Williams, J., Nori, F. & Marandi, A. Non-Abelian effects in dissipative photonic topological lattices. Nat. Commun. 14, 1440 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Pang, Z., Wong, B. T. T., Hu, J. & Yang, Y. Synthetic non-Abelian gauge fields for non-Hermitian systems. Phys. Rev. Lett. 132, 043804 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Shen, J. T. & Fan, S. H. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Realization of fractional quantum Hall state with interacting photons. Science 384, 579–584 (2024). Realizing the optical simulation of fractional quantum Hall physics.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic landau levels for photons. Nature 534, 671–675 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Corman, L. Light turned into exotic Laughlin matter. Nature 582, 37–38 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lim, H. T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoglu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ke, Y. G., Poshakinskiy, A. V., Lee, C. H., Kivshar, Y. S. & Poddubny, A. N. Inelastic scattering of photon pairs in qubit arrays with subradiant states. Phys. Rev. Lett. 123, 253601 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ke, Y. G., Huang, J. X., Liu, W. J., Kivshar, Y. S. & Lee, C. H. Topological inverse band theory in waveguide quantum electrodynamics. Phys. Rev. Lett. 131, 103604 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ke, Y. G. et al. Radiative topological biphoton states in modulated qubit arrays. Phys. Rev. Res. 2, 033190 (2020).

    Article 

    Google Scholar
     

  • Poshakinskiy, A. V. et al. Quantum Hall phases emerging from atom–photon interactions. npj Quantum Inf. 7, 3435 (2021).

    Article 

    Google Scholar
     

  • Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    Article 

    Google Scholar
     

  • Walter, A.-S. et al. Quantization and its breakdown in a Hubbard–Thouless pump. Nat. Phys. 19, 1471–1475 (2023).

    Article 

    Google Scholar
     

  • Ke, Y. & Lee, C. Topological quantum tango. Nat. Phys. 19, 1387–1388 (2023).

    Article 

    Google Scholar
     

  • Song, W. et al. Dispersionless coupling among optical waveguides by artificial gauge field. Phys. Rev. Lett. 129, 053901 (2022). Introducing artificial gauge fields into photonic chips for broadband optical coupling.

    Article 
    ADS 

    Google Scholar
     

  • Feng, X. et al. Non-Hermitian hybrid silicon photonic switching. Nat. Photon. 19, 264–270 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Dai, T. et al. A programmable topological photonic chip. Nat. Mater. 23, 928–936 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Z. et al. Ultrabroadband low-crosstalk dense lithium niobate waveguides by Floquet engineering. Phys. Rev. Appl. 20, 054005 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, W. et al. Landau rainbow induced by artificial gauge fields. Phys. Rev. Lett. 133, 233801 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Descheemaeker, L., Ginis, V., Viaene, S. & Tassin, P. Optical force enhancement using an imaginary vector potential for photons. Phys. Rev. Lett. 119, 137402 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Tambasco, J.-L. et al. Quantum interference of topological states of light. Sci. Adv. 4, 3187 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Artificial-gauge-field-based inverse design for wideband-flat power splitter and microring resonator. Adv. Photon. Nexus 4, 016001 (2025).


    Google Scholar
     

  • Pilozzi, L., Farrelly, F. A., Marcucci, G. & Conti, C. Machine learning inverse problem for topological photonics. Commun. Phys. 1, 57 (2018).

    Article 

    Google Scholar
     

  • Xia, S. et al. Deep-learning-empowered synthetic dimension dynamics: morphing of light into topological modes. Adv. Photon. 6, 026005 (2024).

    Article 
    ADS 

    Google Scholar