• Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).

    Article 

    Google Scholar
     

  • Martin, L. & Rappe, A. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hung, N. T. et al. Symmetry breaking in 2D materials for optimizing second-harmonic generation. J. Phys. D 57, 333002 (2024).

    Article 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Checkelsky, J. G., Bernevig, B. A., Coleman, P., Si, Q. & Paschen, S. Flat bands, strange metals and the Kondo effect. Nat. Rev. Mater. 9, 509–526 (2024).

    Article 

    Google Scholar
     

  • Van Speybroeck, V. et al. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044–7111 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chamorro, J. R., McQueen, T. M. & Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 121, 2898–2934 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. In Proc. International Conference on Learning Representations https://openreview.net/pdf?id=03RLpj-tc_ (ICLR, 2022).

  • Yang, M. et al. Scalable diffusion for materials generation. In Proc. International Conference on Learning Representations https://openreview.net/pdf?id=2vt5z5x9fS (ICLR, 2024).

  • Jiao, R. et al. Crystal structure prediction by joint equivariant diffusion. Adv. Neural Inf. Process. Syst. 36, 17464–17497 (2024).


    Google Scholar
     

  • Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiao, R., Huang, W., Liu, Y., Zhao, D. & Liu, Y. Space group constrained crystal generation. In Proc. International Conference on Learning Representations 2024 (ICLR, 2024)

  • Zeni, C. et al. A generative model for inorganic materials design. Nature 639, 624–632 (2025).

  • Cao, Z., Luo, X., Lv, J. & Wang, L. Space group informed transformer for crystalline materials generation. Preprint at https://arxiv.org/abs/2403.15734 (2024).

  • Martinez, J. Archimedean lattices. Algebra Universalis 3, 247–260 (1973).

    Article 

    Google Scholar
     

  • Eddi, A., Decelle, A., Fort, E. & Couder, Y. Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett. 87, 56002 (2009).

    Article 

    Google Scholar
     

  • Zimmermann, N. E. & Jain, A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv. 10, 6063–6081 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tsai, W.-F., Fang, C., Yao, H. & Hu, J. Interaction-driven topological and nematic phases on the Lieb lattice. New J. Phys. 17, 055016 (2015).

    Article 

    Google Scholar
     

  • Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pickett, W. E. The dawn of the nickel age of superconductivity. Nat. Rev. Phys. 3, 7–8 (2021).

    Article 

    Google Scholar
     

  • Merker, H. A. et al. Machine learning magnetism classifiers from atomic coordinates. Iscience 25, 105192 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Tranquada, J. et al. Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett. 78, 338 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 

    Google Scholar
     

  • Pan, H. et al. Benchmarking coordination number prediction algorithms on inorganic crystal structures. Inorg. Chem. 60, 1590–1603 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zachariasen, W. Metallic radii and electron configurations of the 5f–6d metals. J. Inorg. Nucl. Chem. 35, 3487–3497 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Lugmayr, A. et al. Repaint: inpainting using denoising diffusion probabilistic models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (ed O’Conner, L.) 11461–11471 (IEEE, 2022).

  • Song, Y. et al. Score-based generative modeling through stochastic differential equations. In Proc. International Conference on Learning Representations 2021 https://openreview.net/pdf?id=PxTIG12RRHS (ICLR, 2021).

  • Davies, D. W. et al. Smact: Semiconducting materials by analogy and chemical theory. J. Open Source Softw. 4, 1361 (2019).

    Article 

    Google Scholar
     

  • Geiger, M. & Smidt, T. e3nn: Euclidean neural networks. Preprint at https://arxiv.org/abs/2207.09453 (2022).

  • Chen, Z. et al. Direct prediction of phonon density of states with Euclidean neural networks. Adv. Sci. 8, 2004214 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Riebesell, J. et al. A framework to evaluate machine learning crystal stability predictions. Nat. Mach. Intell. 7, 836–847 (2025).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article 

    Google Scholar
     

  • Okabe, R. Structural constraint integration in a generative model for discovery of quantum material candidates. figshare https://doi.org/10.6084/m9.figshare.c.7283062 (2025).