• Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Wen, X. G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Wen, X. G. Edge transport properties of the fractional quantum Hall states and weak-impurity scattering of a one-dimensional charge-density wave. Phys. Rev. B 44, 5708–5719 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Wen, X. G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Kane, C. L. & Fisher, M. P. A. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220–1223 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Kane, C. L. & Fisher, M. P. A. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B 46, 15233–15262 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Kane, C. L. & Fisher, M. P. A. Nonequilibrium noise and fractional charge in the quantum Hall effect. Phys. Rev. Lett. 72, 724–727 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Fendley, P., Saleur, H. & Warner, N. Exact solution of a massless scalar field with a relevant boundary interaction. Nucl. Phys. B 430, 577–596 (1994).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Fendley, P., Ludwig, A. W. W. & Saleur, H. Exact conductance through point contacts in the ν = 1/3 fractional quantum Hall effect. Phys. Rev. Lett. 74, 3005–3008 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Fendley, P., Ludwig, A. W. W. & Saleur, H. Exact nonequilibrium transport through point contacts in quantum wires and fractional quantum Hall devices. Phys. Rev. B 52, 8934–8950 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Chamon, C. D. C. & Wen, X. G. Resonant tunneling in the fractional quantum Hall regime. Phys. Rev. Lett. 70, 2605–2608 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Chamon, C. D. C., Freed, D. E. & Wen, X. G. Tunneling and quantum noise in one-dimensional Luttinger liquids. Phys. Rev. B 51, 2363–2379 (1995).

    Article 
    ADS 

    Google Scholar
     

  • de Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nat. Commun. 13, 344 (2022).

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Fabry-Pérot interferometry at the ν = 2/5 fractional quantum Hall state. Phys. Rev. X 13, 041012 (2023).


    Google Scholar
     

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ruelle, M. et al. Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023).


    Google Scholar
     

  • Lee, J. Y. M. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Milliken, F., Umbach, C. & Webb, R. Indications of a Luttinger liquid in the fractional quantum Hall regime. Solid State Commun. 97, 309–313 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Chang, A. M., Pfeiffer, L. N. & West, K. W. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Grayson, M., Tsui, D. C., Pfeiffer, L. N., West, K. W. & Chang, A. M. Continuum of chiral Luttinger liquids at the fractional quantum Hall edge. Phys. Rev. Lett. 80, 1062–1065 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Chang, A. M., Wu, M. K., Chi, C. C., Pfeiffer, L. N. & West, K. W. Plateau behavior in the chiral Luttinger liquid exponent. Phys. Rev. Lett. 86, 143–146 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Goldman, V. J. & Su, B. Resonant tunneling in the quantum Hall regime: measurement of fractional charge. Science 267, 1010–1012 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Maasilta, I. & Goldman, V. Line shape of resonant tunneling between fractional quantum Hall edges. Phys. Rev. B 55, 4081 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Roddaro, S. et al. Nonlinear quasiparticle tunneling between fractional quantum Hall edges. Phys. Rev. Lett. 90, 046805 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Roddaro, S., Pellegrini, V., Beltram, F., Biasiol, G. & Sorba, L. Interedge strong-to-weak scattering evolution at a constriction in the fractional quantum Hall regime. Phys. Rev. Lett. 93, 046801 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Roddaro, S., Pellegrini, V. & Beltram, F. Quasi-particle tunneling at a constriction in a fractional quantum Hall state. Solid State Commun. 131, 565–572 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Baer, S. et al. Experimental probe of topological orders and edge excitations in the second Landau level. Phys. Rev. B 90, 075403 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hennel, S. et al. Quasiparticle tunneling in the lowest Landau level. Phys. Rev. B 97, 245305 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Miller, J. B. et al. Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2. Nat. Phys. 3, 561–565 (2007).

    Article 

    Google Scholar
     

  • Radu, I. P. et al. Quasi-particle properties from tunneling in the ν = 5/2 fractional quantum Hall state. Science 320, 899–902 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Veillon, A. et al. Observation of the scaling dimension of fractional quantum Hall anyons. Nature 632, 517–521 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Snizhko, K. & Cheianov, V. Scaling dimension of quantum Hall quasiparticles from tunneling-current noise measurements. Phys. Rev. B 91, 195151 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Schiller, N., Oreg, Y. & Snizhko, K. Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cohen, L. A. et al. Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact. Science 382, 542–547 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chamon, C. D. C. & Wen, X. G. Sharp and smooth boundaries of quantum Hall liquids. Phys. Rev. B 49, 8227–8241 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Chamon, C. D. C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, J. et al. Aharonov-Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article 

    Google Scholar
     

  • Liang, S., Nakamura, J., Gardner, G. C. & Manfra, M. J. Single electron interference and capacitive edge mode coupling generates Φ0/2 flux periodicity in Fabry-Pérot interferometers. Nat. Commun. 16, 7586 (2025).

  • Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D. & Umansky, V. Melting of interference in the fractional quantum Hall effect: appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Schiller, N. et al. Scaling tunnelling noise in the fractional quantum Hall effect tells about renormalization and breakdown of chiral Luttinger liquid. Preprint at https://arxiv.org/abs/2403.17097 (2024).

  • Eisenstein, J., Pfeiffer, L. & West, K. Independently contacted two-dimensional electron systems in double quantum wells. Appl. Phys. Lett. 57, 2324–2326 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Rosenow, B. & Halperin, B. I. Nonuniversal behavior of scattering between fractional quantum Hall edges. Phys. Rev. Lett. 88, 096404 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Papa, E. & MacDonald, A. H. Interactions suppress quasiparticle tunneling at Hall bar constrictions. Phys. Rev. Lett. 93, 126801 (2004).

    Article 
    ADS 

    Google Scholar