• Lefringhausen, C. T. Covid-19 vaccines-an australian review. J. Clin. Exp. Immunol. 7(3), 491–508 (2022).


    Google Scholar
     

  • Haleem, A., Javaid, M. & Vaishya, R. Effects of covid-19 pandemic in daily life. Curr. Med. Res. Pract. 10, 78 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Bulletin of who at https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-167 (WHO, 2020).

  • Article. Reports of european centre for disease prevention and control at. https://www.ecdc.europa.eu/en/covid-19/variants-concern (2024).

  • https://www.unmc.edu/healthsecurity/transmission/2023/12/19/4-big-covid-predictions-for-2024 (2024).

  • Ellis, R. Who changes stance, says public should wear masks. webmd (2020).

  • Qin, B. & Li, D. Identifying facemask-wearing condition using image super-resolution with classification network to prevent covid-19. Sensors 20, 5236 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, S. et al. Rational use of face masks in the covid-19 pandemic. Lancet Respir. Med. 8, 434–436 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ejaz, S. E. A. & Islam, R. Implementation of principal component analysis on masked and non-masked face recognition. In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT) 1–5 (IEEE, 2019).

  • Prajapati, A. C. et al. A hospital based cross sectional study to find out factors associated with disease severity and length of hospital stay in covid-19 patients in tertiary care hospital of ahmedabad city. Indian J. Community Health 33, 256–259 (2021).

    Article 

    Google Scholar
     

  • Shadesh, N. H. Enhancing public health: a better approach for face mask detection using transfer learning to prevent airborne disease. Ph.D. thesis, Sonargaon University (SU) (2023).

  • Lv, W. et al. Towards large-scale and privacy-preserving contact tracing in covid-19 pandemic: a blockchain perspective. IEEE Trans. Netw. Sci. Eng. 9, 282–298 (2020).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Desai, F. et al. Health cloud: a system for monitoring health status of heart patients using machine learning and cloud computing. IEEE Internet Things J. 17, 1–35 (2021).


    Google Scholar
     

  • Wu, T., Wu, F., Qiu, C., Redouté, J.-M. & Yuce, M. R. A rigid-flex wearable health monitoring sensor patch for iot-connected healthcare applications. IEEE Internet Things J. 7, 6932–6945 (2020).

    Article 

    Google Scholar
     

  • Leung, N. H. et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 26, 676–680 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christa, G. H., Jesica, J., Anisha, K. & Sagayam, K. M. Cnn-based mask detection system using opencv and mobilenetv2. In 2021 3rd International Conference on Signal Processing and Communication (ICPSC) 115–119 (IEEE, 2021).

  • Rocha, A. et al. Edge ai for internet of medical things: a literature review. Comput. Electr. Eng. 116, 109202 (2024).

    Article 

    Google Scholar
     

  • Vinuesa, R. et al. The role of artificial intelligence in achieving the sustainable development goals. Nat. Commun. 11, 1–10 (2020).

    Article 

    Google Scholar
     

  • Joshi, M., P, A. & S, M. Federated learning for healthcare domain – pipeline, applications and challenges. ACM Trans. Computi. Healthcare3, 1–36 (2022).

  • Peiyuan, J. et al. A review of yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135 (2022).

    Article 

    Google Scholar
     

  • Li, Li, et al. Deepcovid-xr: An artificial intelligence algorithm to detect covid-19 on chest radiographs trained and tested on a large us clinical dataset. Radiology. https://pubs.rsna.org/doi/10.1148/radiol.2020203511 (2021).

  • Habibzadeh, H. et al. A survey of healthcare internet of things (hiot): a clinical perspective. IEEE Internet Things J. 7, 53–71 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chigada, J. & Madzinga, R. Cyberattacks and threats during covid-19: a systematic literature review. South Afr. J. Inf. Manage. 23, 1–11 (2021).


    Google Scholar
     

  • Park Jisu, E. S., Jinman, Jung & Sun, Y. Y. Ui elements identification for mobile applications based on deep learning using symbol marker. J. Inst. Internet Broadcast. Commun. 20, 89–95 (2020).


    Google Scholar
     

  • Li Chong, L. J., Wang Rong & Linyu, F. Face detection based on yolov3. In Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018 277–284 (Springer, 2020).

  • Ray, P. P., Thapa, N., Dash, D. & De, D. Novel implementation of iot based non-invasive sensor system for real-time monitoring of intravenous fluid level for assistive e-healthcare. Circ. World 45, 109–123 (2019).

    Article 

    Google Scholar
     

  • Habibzadeh, H. et al. A survey of healthcare internet of things (hiot): a clinical perspective. IEEE Internet Things J. 7, 53–71 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Liu Y, et al. Federated machine learning: concept and applications. arXiv (Cornell University). arXiv:1902.04885v1 (2019).

  • Ahmed, I., J, G., & Ahmad, I. M. Social distance monitoring framework using deep learning architecture to control infection transmission of covid-19 pandemic. Sustain. Cities Soc.69, 102777 (2021).

  • Dubey, P., Dubey, P., Iwendi, C., Biamba, C. N. & Rao, D. D. Enhanced iot-based face mask detection framework using optimized deep learning models: a hybrid approach with adaptive algorithms. IEEE Access (2025).

  • Chen, S., Xue, D., Chuai, G., Yang, Q. & Liu, Q. Fl-qsar: a federated learning-based qsar prototype for collaborative drug discovery. Bioinformatics 36, 5492–5498 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nishio, T. & Yonetani, R. Client selection for federated learning with heterogeneous resources in mobile edge. In ICC 2019-2019 IEEE International Conference on Communications (ICC) 1–7 (IEEE, 2019).

  • Ammad-Ud-Din, M. et al. Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint arXiv:1901.09888 (2019).

  • Solanki, T., Rai, B. K. & Sharma, S. Federated learning using tensor flow. In Federated Learning for IoT Applications 157–167 (Springer, 2022).

  • Alawida, M., Omolara, A. E., Abiodun, O. I. & Al-Rajab, M. A deeper look into cybersecurity issues in the wake of covid-19: a survey. J. King Saud Univ.-Comput. Inf. Sci. 34, 8176–8206 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L. et al. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 99, 103291 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ge, S. et al. Fedner: Privacy-preserving medical named entity recognition with federated learning. arXiv preprint arXiv:2003.09288 (2020).

  • Stuart, R. M., Abeysuriya, R. G. et al. Role of masks, testing and contact tracing in preventing covid-19 resurgences: a case study from new south wales, australia. In BMJ Open 1–8 (IEEE, 2021).

  • Hussain, S. et al. Iot and deep learning based approach for rapid screening and face mask detection for infection spread control of covid-19. Appl. Sci. 2021, 3495 (2021).

  • Sanyal S, W. D. & B, N. A federated filtering framework for internet of medical things. In ICC 2019–2019 IEEE International Conference on Communications (ICC) 1–6. https://doi.org/10.1109/ICC.2019.8761381 (2019).

  • Teo, Z. L. et al. Federated machine learning in healthcare: a systematic review on clinical applications and technical architecture. Cell Rep. Med. 5, 56 (2024).

  • P, B. D. & G, B. B. Implementation of least mean square adaptive algorithm on covid-19 prediction. In JUITA: JurnalInformatika, e-ISSN: 2579-8901 1–11. https://doi.org/10.1007/s13748-012-0035-5 (2022).

  • Li Chong, L. J., Wang Rong & Linyu, F. Face detection based on yolov3. In Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018 277–284 (Springer, 2020).

  • Heidari, A. et al. A new lung cancer detection method based on the chest ct images using federated learning and blockchain systems. Artif. Intell. Med. 141, 102572 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Amiri, Z., Heidari, A., Navimipour, N. J., Esmaeilpour, M. & Yazdani, Y. The deep learning applications in iot-based bio-and medical informatics: a systematic literature review. Neural Comput. Appl. 36, 5757–5797 (2024).

    Article 

    Google Scholar
     

  • Amiri, Z., Heidari, A., Navimipour, N. J. & Unal, M. Resilient and dependability management in distributed environments: a systematic and comprehensive literature review. Clust. Comput. 26, 1565–1600 (2023).

    Article 

    Google Scholar
     

  • Z, W. Use of supervised machine learning to detect abuse of covid-19 related domain names. Comput. Electr. Eng. 100, 107864 (2022).

  • Sadeghi, Z., Alizadehsani, R., et al. A review of explainable artificial intelligence in healthcare. Comput. Electri. Engi. 118, 109370 (2024).

  • Din Nizam Ud, B. S., Kamran, Javed & Juneho, Y. A novel gan-based network for unmasking of masked face. IEEE Access 8, 44276–44287 (2020).

    Article 

    Google Scholar
     

  • Goodfellow, I. Deep learning (2016).

  • Heidari, A., Jamali, M. A. J. & Navimipour, N. J. Fuzzy logic multicriteria decision-making for broadcast storm resolution in vehicular ad hoc networks. Int. J. Commun. Syst. 38, e6034 (2025).

    Article 

    Google Scholar
     

  • Wang, R., Lei, T, et al. Medical image segmentation using deep learning: a survey. IET image Process. 16, 1243–1267 (2022).

  • Wang Yi, G. G., Xiao, Song & Ni, L. A multi-scale feature extraction-based normalized attention neural network for image denoising. Electronics 10, 319 (2021).

    Article 

    Google Scholar
     

  • Tedeschi, S., Emmanouilidis, C., Mehnen, J. & Roy, R. A design approach to iot endpoint security for production machinery monitoring. Sensors 19, 2355 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondal, S. & Mitra, P. The role of emerging technologies to fight against covid-19 pandemic: an exploratory review. Trans. Indian Natl. Acad. Eng. 7, 157–174 (2022).

  • Heidari, A., Amiri, Z., Jamali, M. A. J. & Navimipour, N. J. Enhancing solar convection analysis with multi-core processors and gpus. Eng. Rep. 7, e13050 (2025).

    Article 

    Google Scholar
     

  • Jain, R., T, S., Gupta, M. & J, H. D. Deep learning based detection and analysis of covid-19 on chest x-ray images. Appl. Intell.51, 1690–1700 (2021).

  • Toumaj, S., Heidari, A., Shahhosseini, R. & Jafari Navimipour, N. Applications of deep learning in alzheimer’s disease: a systematic literature review of current trends, methodologies, challenges, innovations, and future directions. Artif. Intell. Rev. 58, 44 (2024).

    Article 

    Google Scholar
     

  • M, B. The risk to population health equity posed by automated decision systems-a narrative review. ArXiv200106615 Cs Jan. 2020. Accessed Nov 21 2020. (2020).

  • M Seif, R. T. & Li, M. Wireless federated learning with local differential privacy,. ArXiv200205151 Cs Math, Feb. 2020, Accessed: Nov. 21, 2020. (2020).

  • Lyu, L, Yu, H, et al. Threats to federated learning-a survey,. ArXiv200302133 Cs Stat, Mar. 2020, Accessed: Nov. 21, 2020. (2020).

  • Liu, Y, Ma, Z, et al. Boosting privately-privacy-preserving federated extreme boosting for mobile crowdsensing,. ArXiv190710218 Cs, Apr. 2020, Accessed: Nov. 21, 2020. (2020).

  • Yao, X., Huang, T., Wu, C., Zhang, R. & Sun, L. Towards faster and better federated learning: a feature fusion approach. 2019 IEEE International Conference on Image Processing (ICIP) 175–179 (2019).

  • Mansour, Y., Mohri, M., Ro, J. & Suresh, A. T. Three approaches for personalization with applications to federated learning. arXiv preprint arXiv:2002.10619 (2020).

  • Abdul Salam, M., Taha, S. & Ramadan, M. Covid-19 detection using federated machine learning. PLoS ONE 16, e0252573 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandati, D. R. & Gadekallu, T. R. Genetic clustered federated learning for covid-19 detection. Electronics 11, 2714 (2022).

    Article 

    Google Scholar
     

  • Rahman, A. et al. Federated learning-based ai approaches in smart healthcare: concepts, taxonomies, challenges and open issues. Clust. Comput. 26, 2271–2311 (2023).

    Article 

    Google Scholar
     

  • Shahin Ali, M. et al. Federated learning in healthcare: model misconducts, security, challenges, applications, and future research directions–a systematic review. arXiv e-prints arXiv–2405 (2024).

  • Keniya, R. & Mehendale, N. Real-time social distancing detector using socialdistancingnet-19 deep learning network. Available at SSRN 3669311 (2020).

  • Wang, L., Lin, Z. Q. & Wong, A. Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci. Rep. 10, 19549 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loke, C. H. et al. Physical distancing device with edge computing for covid-19 (paddie-c19). Sensors 22, 279 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. & Wu, Z. The application of yolov4 and a new pedestrian clustering algorithm to implement social distance monitoring during the covid-19 pandemic. In Journal of Physics: Conference Series, vol. 1865 042019 (IOP Publishing, 2021).

  • Shareef, A. A. A., Yannawar, P. L., Abdul-Qawy, A. S. H. & Ahmed, Z. A. Yolov4-based monitoring model for covid-19 social distancing control. In Smart Systems: Innovations in Computing: Proceedings of SSIC 2021 333–346 (Springer, 2022).

  • Elbachir, Y. M., Makhlouf, D., Mohamed, G., Bouhamed, M. M. & Abdellah, K. Federated learning for multi-institutional on 3d brain tumor segmentation. In 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS) 1–8 (IEEE, 2024).

  • Rahman, A. et al. Federated learning-based ai approaches in smart healthcare: concepts, taxonomies, challenges and open issues. Clust. Comput. 26, 2271–2311 (2023).

    Article 

    Google Scholar
     

  • Rauniyar, A. et al. Federated learning for medical applications: a taxonomy, current trends, challenges, and future research directions. IEEE Internet Things J. 11, 7374–7398 (2023).

    Article 

    Google Scholar
     

  • Dhade, P. & Shirke, P. Federated learning for healthcare: a comprehensive review. Eng. Proc. 59, 230 (2024).


    Google Scholar
     

  • Mahmoud, M., Kasem, M. S. & Kang, H.-S. A comprehensive survey of masked faces: recognition, detection, and unmasking. arXiv preprint arXiv:2405.05900 (2024).

  • Seresirikachorn, K. et al. Investigating public behavior with artificial intelligence-assisted detection of face mask wearing during the covid-19 pandemic. PLoS ONE 18, e0281841 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Rakhami, M. S. & Al-Amri, A. M. Lies kill, facts save: detecting covid-19 misinformation in twitter. Ieee Access 8, 155961–155970 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Verma, S. et al. An automated face mask detection system using transfer learning based neural network to preventing viral infection. Expert. Syst. 41, e13507 (2024).

    Article 

    Google Scholar
     

  • AlZubi, A. A., Al-Maitah, M. & Alarifi, A. Cyber-attack detection in healthcare using cyber-physical system and machine learning techniques. Soft. Comput. 25, 12319–12332 (2021).

    Article 

    Google Scholar
     

  • M, S. & S, K. A. K. The power of deep learning for intelligent tumor classification systems: a review. Comput. Electri. Eng.106, 107586 (2023).

  • Nguyen, T. et al. A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data. Sci. Rep. 12, 8888 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amiri, Z., Heidari, A. & Navimipour, N. J. Comprehensive survey of artificial intelligence techniques and strategies for climate change mitigation. Energy 132827 (2024).

  • Asadi, M., Jamali, M. A. J., Heidari, A. & Navimipour, N. J. Botnets unveiled: a comprehensive survey on evolving threats and defense strategies. Trans. Emerg. Telecommun. Technol. 35, e5056 (2024).

    Article 

    Google Scholar
     

  • Heidari, A., Amiri, Z., Jamali, M. A. J. & Jafari, N. Assessment of reliability and availability of wireless sensor networks in industrial applications by considering permanent faults. Concurr. Comput. Pract. Exp. 36, e8252 (2024).

    Article 

    Google Scholar
     

  • Amiri, Z., Heidari, A., Zavvar, M., Navimipour, N. J. & Esmaeilpour, M. The applications of nature-inspired algorithms in internet of things-based healthcare service: a systematic literature review. Trans. Emerg. Telecommun. Technol. 35, e4969 (2024).

    Article 

    Google Scholar
     

  • Zanbouri, K. et al. A gso-based multi-objective technique for performance optimization of blockchain-based industrial internet of things. Int. J. Commun. Syst. 37, e5886 (2024).

    Article 

    Google Scholar
     

  • Heidari, A., Navimipour, N. J., Zeadally, S. & Chamola, V. Everything you wanted to know about chatgpt: components, capabilities, applications, and opportunities. Internet Technol. Lett. 7, e530 (2024).

    Article 

    Google Scholar
     

  • Vakili, A. et al. A new service composition method in the cloud-based internet of things environment using a grey wolf optimization algorithm and mapreduce framework. Concurr. Comput. Pract. Exp. 36, e8091 (2024).

    Article 

    Google Scholar
     

  • Heidari, A., Shishehlou, H., Darbandi, M., Navimipour, N. J. & Yalcin, S. A reliable method for data aggregation on the industrial internet of things using a hybrid optimization algorithm and density correlation degree. Clust. Comput. 27, 7521–7539 (2024).

    Article 

    Google Scholar
     

  • Heidari, A., Navimipour, N. J. & Unal, M. A secure intrusion detection platform using blockchain and radial basis function neural networks for internet of drones. IEEE Internet Things J. 10, 8445–8454 (2023).

    Article 

    Google Scholar
     

  • Aggarwal, D., Zhou, J. & Jain, A. K. Fedface: collaborative learning of face recognition model. In 2021 IEEE International Joint Conference on Biometrics (IJCB) 1–8 (IEEE, 2021).

  • Zhang, J. et al. A review on face mask recognition. Sensors25, https://doi.org/10.3390/s25020387 (2025).