• Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 

    Google Scholar
     

  • Castellanos-Gomez, A. et al. Van der waals heterostructures. Nat. Rev. Methods Prim. 2, 58 (2022).

    Article 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. 108, 12233–12237 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Shavit, G., Berg, E., Stern, A. & Oreg, Y. Theory of correlated insulators and superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 127, 247703 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, C.-X., Chen, Y., Yazdani, A. & Bernevig, B. A. Electron–K-phonon interaction in twisted bilayer graphene. Phys. Rev. B 110, 045133 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y.-J., Zhou, G.-D., Peng, S.-Y., Lian, B. & Song, Z.-D. Molecular pairing in twisted bilayer graphene superconductivity. Phys. Rev. Lett. 133, 146001 (2024).

  • Wang, Y.-J., Zhou, G.-D., Lian, B. & Song, Z.-D. Electron-phonon coupling in the topological heavy fermion model of twisted bilayer graphene. Phys. Rev. B 111, 035110 (2025).

  • Ochi, M., Koshino, M. & Kuroki, K. Possible correlated insulating states in magic-angle twisted bilayer graphene under strongly competing interactions. Phys. Rev. B 98, 081102 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chou, Y.-Z., Wu, F., Sau, J. D. & Das Sarma, S. Acoustic-phonon-mediated superconductivity in bernal bilayer graphene. Phys. Rev. B 105, L100503 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Isobe, H., Yuan, N. F. Q. & Fu, L. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018).


    Google Scholar
     

  • Angeli, M., Tosatti, E. & Fabrizio, M. Valley jahn-teller effect in twisted bilayer graphene. Phys. Rev. X 9, 041010 (2019).


    Google Scholar
     

  • Blason, A. & Fabrizio, M. Local kekulé distortion turns twisted bilayer graphene into topological mott insulators and superconductors. Phys. Rev. B 106, 235112 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Christos, M., Sachdev, S. & Scheurer, M. S. Nodal band-off-diagonal superconductivity in twisted graphene superlattices. Nat. Commun. 14, 7134 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam, S. F., Zyuzin, A. Y. & Zyuzin, A. A. Unconventional superconductivity with preformed pairs in twisted bilayer graphene. Phys. Rev. B 107, L060503 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Dodaro, J. F., Kivelson, S. A., Schattner, Y., Sun, X.-Q. & Wang, C. Phases of a phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154 (2018).

    Article 
    ADS 

    Google Scholar
     

  • You, Y.-Z. & Vishwanath, A. Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene. npj Quantum Mater. 4, 16 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Löthman, T., Schmidt, J., Parhizgar, F. & Black-Schaffer, A. M. Nematic superconductivity in magic-angle twisted bilayer graphene from atomistic modeling. Commun. Phys. 5, 92 (2022).

    Article 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cao, Y., Park, J. M., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 595, 526–531 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Holleis, L. et al. Nematicity and orbital depairing in superconducting bernal bilayer graphene. Nature Physics 21, 444–450 (2025).

  • Li, C. et al. Tunable superconductivity in electron-and hole-doped bernal bilayer graphene. Nature 631, 300–306 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Su, R., Kuiri, M., Watanabe, K., Taniguchi, T. & Folk, J. Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nat. Mater. 22, 1332–1337 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Han, T. et al. Signatures of chiral superconductivity in rhombohedral graphene. Nature 643, 654–661 (2025).

  • Choi, Y. et al. Superconductivity and quantized anomalous Hall effect in rhombohedral graphene. Nature 639, 342–347 (2025).

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Simulation of hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Continuous mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).


    Google Scholar
     

  • Kang, K. et al. Evidence of the fractional quantum spin hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wietek, A. et al. Tunable stripe order and weak superconductivity in the moiré hubbard model. Phys. Rev. Res. 4, 043048 (2022).

    Article 

    Google Scholar
     

  • Klebl, L., Fischer, A., Classen, L., Scherer, M. M. & Kennes, D. M. Competition of density waves and superconductivity in twisted tungsten diselenide. Phys. Rev. Res. 5, L012034 (2023).

    Article 

    Google Scholar
     

  • Zhou, B. & Zhang, Y.-H. Chiral and nodal superconductors in the t−J model with valley contrasting flux on a triangular moiré lattice. Phys. Rev. B 108, 155111 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bélanger, M., Fournier, J. & Sénéchal, D. Superconductivity in the twisted bilayer transition metal dichalcogenide WSe2: a quantum cluster study. Phys. Rev. B 106, 235135 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chen, F. & Sheng, D. N. Singlet, triplet, and pair density wave superconductivity in the doped triangular-lattice moiré system. Phys. Rev. B 108, L201110 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zegrodnik, M. & Biborski, A. Mixed singlet-triplet superconducting state within the moiré t − J − U model applied to twisted bilayer WSe2. Phys. Rev. B 108, 064506 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Akbar, W., Biborski, A., Rademaker, L. & Zegrodnik, M. Topological superconductivity with mixed singlet-triplet pairing in moiré transition-metal-dichalcogenide bilayers. Phys. Rev. B 110, 064516 (2024).

  • Wu, Y.-M., Wu, Z. & Yao, H. Pair-density-wave and chiral superconductivity in twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 130, 126001 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xie, Y.-M. & Law, K. T. Orbital fulde-ferrell pairing state in moiré ising superconductors. Phys. Rev. Lett. 131, 016001 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schrade, C. & Fu, L. Nematic, chiral, and topological superconductivity in twisted transition metal dichalcogenides. Phys. Rev. B 110, 035143 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Crépel, V., Guerci, D., Cano, J., Pixley, J. & Millis, A. Topological superconductivity in doped magnetic moiré semiconductors. Phys. Rev. Lett. 131, 056001 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

  • Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

  • Pan, H., Wu, F. & Das Sarma, S. Band topology, hubbard model, heisenberg model, and dzyaloshinskii-moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).

    Article 

    Google Scholar
     

  • Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-fock study of the moiré hubbard model for twisted bilayer transition metal dichalcogenides. Phys. Rev. B 104, 075150 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kiese, D., He, Y., Hickey, C., Rubio, A. & Kennes, D. M. TMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2. APL Mater. 10, 031113 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pan, H., Wu, F. & Das Sarma, S. Quantum phase diagram of a moiré-hubbard model. Phys. Rev. B 102, 201104 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kundu, S., Naik, M. H., Krishnamurthy, H. R. & Jain, M. Moiré induced topology and flat bands in twisted bilayer WSe2: a first-principles study. Phys. Rev. B 105, L081108 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, W.-X., Li, B., Luo, X.-J. & Wu, F. Interaction-driven topological phase diagram of twisted bilayer MoTe2. Phys. Rev. X 13, 041026 (2023).


    Google Scholar
     

  • Xu, C., Li, J., Xu, Y., Bi, Z. & Zhang, Y. Maximally localized wannier functions, interaction models, and fractional quantum anomalous hall effect in twisted bilayer MoTe2. Proc. Natl Acad. Sci. 121, e2316749121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crépel, V. & Millis, A. Bridging the small and large in twisted transition metal dichalcogenide homobilayers: a tight binding model capturing orbital interference and topology across a wide range of twist angles. Phys. Rev. Res. 6, 033127 (2024).

    Article 

    Google Scholar
     

  • Koshino, M. et al. Maximally localized wannier orbitals and the extended hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).


    Google Scholar
     

  • Kang, J. & Vafek, O. Symmetry, maximally localized wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018).


    Google Scholar
     

  • Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • McMillan, W. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Cea, T. & Guinea, F. Coulomb interaction, phonons, and superconductivity in twisted bilayer graphene. Proc. Natl Acad. Sci. 118, e2107874118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghazaryan, A., Holder, T., Serbyn, M. & Berg, E. Unconventional superconductivity in systems with annular fermi surfaces: Application to rhombohedral trilayer graphene. Phys. Rev. Lett. 127, 247001 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Guo, H., Zhu, X., Feng, S. & Scalettar, R. T. Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Phys. Rev. B 97, 235453 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ray, S., Jung, J. & Das, T. Wannier pairs in superconducting twisted bilayer graphene and related systems. Phys. Rev. B 99, 134515 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chatterjee, S., Wang, T., Berg, E. & Zaletel, M. P. Inter-valley coherent order and isospin fluctuation mediated superconductivity in rhombohedral trilayer graphene. Nat. Commun. 13, 6013 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohn, W. & Luttinger, J. New mechanism for superconductivity. Phys. Rev. Lett. 15, 524 (1965).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Monthoux, P., Balatsky, A. & Pines, D. Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. Phys. Rev. Lett. 67, 3448 (1991).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Scalapino, D. J. The case for dx2- y2 pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Chiu, C.-K., Teo, J. C., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chen, K. S. et al. Unconventional superconductivity on the triangular lattice hubbard model. Phys. Rev. B 88, 041103 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Venderley, J. & Kim, E.-A. Density matrix renormalization group study of superconductivity in the triangular lattice hubbard model. Phys. Rev. B 100, 060506 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fallahazad, B. et al. Shubnikov–de haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cheng, M., Sun, K., Galitski, V. & Das Sarma, S. Stable topological superconductivity in a family of two-dimensional fermion models. Phys. Rev. B 81, 024504 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Deutscher, G. Percolation and Superconductivity, 95–113 (Springer, 1984).

  • Alexander, S. Superconductivity of networks. A percolation approach to the effects of disorder. Phys. Rev. B 27, 1541–1557 (1983).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Fischer, A. et al. Theory of intervalley-coherent afm order and topological superconductivity in tWSe2. Preprint at https://arxiv.org/abs/2412.14296 (2024).

  • Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Julku, A., Peotta, S., Vanhala, T. I., Kim, D.-H. & Törmä, P. Geometric origin of superfluidity in the Lieb-lattice flat band. Phys. Rev. Lett. 117, 045303 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liang, L. et al. Band geometry, berry curvature, and superfluid weight. Phys. Rev. B 95, 024515 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Herzog-Arbeitman, J., Peri, V., Schindler, F., Huber, S. D. & Bernevig, B. A. Superfluid weight bounds from symmetry and quantum geometry in flat bands. Phys. Rev. Lett. 128, 087002 (2022).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Huhtinen, K.-E., Herzog-Arbeitman, J., Chew, A., Bernevig, B. A. & Törmä, P. Revisiting flat band superconductivity: dependence on minimal quantum metric and band touchings. Phys. Rev. B 106, 014518 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

    Article 

    Google Scholar
     

  • Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Banerjee, M. et al. Observation of half-integer thermal hall conductance. Nature 559, 205–210 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors-evidence for \({{{{\rm{d}}}}}_{{x}^{2}-{y}^{2}}\) symmetry. Rev. Mod. Phys. 67, 515 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Tsuei, C. & Kirtley, J. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S., Mendez-Valderrama, J. F., Wang, X. & Chowdhury, D. Theory of correlated insulators and superconductor at ν = 1 in twisted WSe2. Nat. Commun. 16, 1701 (2025)

  • Myerson-Jain, N. & Xu, C. Superconductor-insulator transition in the TMD moiré systems and the deconfined quantum critical point. Preprint at https://arxiv.org/abs/2406.12971 (2024).

  • Zhu, J., Chou, Y.-Z., Xie, M. & Sarma, S. D. Superconductivity in twisted transition metal dichalcogenide homobilayers. Phys. Rev. B 111, L060501 (2025).

  • Christos, M., Bonetti, P. M. & Scheurer, M. S. Approximate symmetries, insulators, and superconductivity in the continuum-model description of twisted WSe2. Phys. Rev. Lett. 135, 046503 (2025).

  • Xie, F. et al. Superconductivity in twisted WSe2 from topology-induced quantum fluctuations. Phys. Rev. Lett. 134, 136503 (2025).

  • Guerci, D., Kaplan, D., Ingham, J., Pixley, J. & Millis, A. J. Topological superconductivity from repulsive interactions in twisted WSe2. Preprint at https://arxiv.org/abs/2408.16075 (2024).