• Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article 

    Google Scholar
     

  • Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, P. W. Resonating valence bonds: a new kind of insulator?. Mater. Res. Bull. 8, 153 (1973).

    Article 

    Google Scholar
     

  • Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Imajo, S. et al. Extraordinary π-electron superconductivity emerging from a quantum spin liquid. Phys. Rev. Res. 3, 033026 (2021).

    Article 

    Google Scholar
     

  • Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valence-bond state: solitons and high-Tc superconductivity. Phys. Rev. B 35, 8865 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, H.-C. & Kivelson, S. A. High temperature superconductivity in a lightly doped quantum spin liquid. Phys. Rev. Lett. 127, 097002 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Helton, J. S. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Olariu, A. et al. 17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 100, 087202 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Han, T. H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet. Science 350, 655 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Han, T.-H. et al. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite. Phys. Rev. B 94, 060409(R) (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Emergence of spin singlets with inhomogeneous gaps in the kagome lattice Heisenberg antiferromagnets Zn-barlowite and herbertsmithite. Nat. Phys. 17, 1109 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Khuntia, P. et al. Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Nat. Phys. 16, 469 (2020).

    Article 

    Google Scholar
     

  • Jiang, H. C., Weng, Z. Y. & Sheng, D. N. Density matrix renormalization group numerical study of the kagome antiferromagnet. Phys. Rev. Lett. 101, 117203 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Yan, S., Huse, D. & White, S. Spin-liquid ground state of the s = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Depenbrock, S., McCulloch, I. P. & Schollwöck, U. Nature of the spin-liquid ground state of the s = 1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett. 109, 067201 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, H. C., Wang, Z. & Balents, L. Identifying topological order by entanglement entropy. Nat. Phys. 8, 902 (2012).

    Article 

    Google Scholar
     

  • Gong, S.-S., Zhu, W., Balents, L. & Sheng, D. N. Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice. Phys. Rev. B 91, 075112 (2015).

    Article 
    ADS 

    Google Scholar
     

  • He, Y.-C., Zaletel, M. P., Oshikawa, M. & Pollmann, F. Signatures of dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017).


    Google Scholar
     

  • Liao, H. J. et al. Gapless spin-liquid ground state in the s = 1/2 kagome antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Norman, M. R. Colloquium: herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Han, T.-H., Singleton, J. & Schlueter, J. A. Barlowite: a spin-1/2 antiferromagnet with a geometrically perfect kagome motif. Phys. Rev. Lett. 113, 227203 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Feng, Z. et al. Gapped spin-1/2 spinon excitations in a new kagome quantum spin liquid compound Cu3Zn(OH)6FBr. Chinese Phys. Lett. 34, 077502 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Smaha, R. W. et al. Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states. npj Quantum Mater. 5, 23 (2020).

  • Tustain, K. et al. From magnetic order to quantum disorder in the Zn-barlowite series of S = 1/2 kagomé antiferromagnets. npj Quantum Mater. 5, 74 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Freezing of the lattice in the kagome lattice heisenberg antiferromagnet Zn-barlowite ZnCu3(OD)6FBr. Phys. Rev. Lett. 128, 157202 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Smaha, R. W. et al. High-energy spin excitations in the quantum spin liquid candidate Zn-substituted barlowite probed by resonant inelastic X-ray scattering. Phys. Rev. B 107, L060402 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Campello, A. C. et al. Phonon dynamics in quantum spin liquid and valence bond crystal states in the barlowite family of kagome magnets. Phys. Rev. B 111, 094406 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Freedman, D. E. et al. Site specific X-ray anomalous dispersion of the geometrically frustrated kagome magnet, herbertsmithite, ZnCu3(OH)6Cl2. J. Am. Chem. Soc. 132, 16185–16190 (2010).

  • Smaha, R. W. et al. Site-specific structure at multiple length scales in kagome quantum spin liquid candidates. Phys. Rev. Mater. 4, 124406 (2020).

    Article 

    Google Scholar
     

  • Yuan, W. et al. Emergence of the spin polarized domains in the kagome lattice Heisenberg antiferromagnet Zn-barlowite (Zn0.95Cu0.05)Cu3(OD)6FBr. npj Quantum Mater. 7, 120 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jeschke, H. O. et al. Barlowite as a canted antiferromagnet: theory and experiment. Phys. Rev. B 92, 094417 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Grohol, D. et al. Spin chirality on a two-dimensional frustrated lattice. Nat. Mater. 4, 323–328 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Han, T., Chu, S. & Lee, Y. S. Refining the spin Hamiltonian in the spin-\(\frac{1}{2}\) kagome lattice antiferromagnet ZnCu3(OH)6Cl2 using single crystals. Phys. Rev. Lett. 108, 157202 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Lee, P. A. & Nagaosa, N. Proposal to use neutron scattering to access scalar spin chirality fluctuations in kagome lattices. Phys. Rev. B 87, 064423 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Suttner, R., Platt, C., Reuther, J. & Thomale, R. Renormalization group analysis of competing quantum phases in the J1-J2 Heisenberg model on the kagome lattice. Phys. Rev. B 89, 020408 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zorko, A. et al. Dzyaloshinsky-Moriya anisotropy in the spin-1/2 kagome compound ZnCu3(OH)6Cl2. Phys. Rev. Lett. 101, 026405 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, W., Shu Gong, S. & Sheng, D. N. Identifying spinon excitations from dynamic structure factor of spin-1/2 Heisenberg antiferromagnet on the kagome lattice. Proc. Natl Acad. Sci. USA 116, 5437 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ferrari, F. et al. Static and dynamical signatures of Dzyaloshinskii-Moriya interactions in the Heisenberg model on the kagome lattice. SciPost Phys. 14, 139 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Punk, M., Chowdhury, D. & Sachdev, S. Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice. Nat. Phys. 10, 289–293 (2014).

    Article 

    Google Scholar
     

  • Feng, Z. et al. From claringbullite to a new spin liquid candidate Cu3Zn(OH)6FCl. Chinese Phys. Lett. 36, 017502 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Georgopoulou, M. et al. Magnetically ordered and kagome quantum spin liquid states in the Zn-doped claringbullite series. Phys. Rev. B 107, 024416 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chatterjee, D. et al. From spin liquid to magnetic ordering in the anisotropic kagome Y-kapellasite Y3Cu9(OH)19Cl8: a single-crystal study. Phys. Rev. B 107, 125156 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, X.-H., Huang, Y.-X., Pan, Y. & Mi, J.-X. Quantum spin liquid candidate YCu3(OH)6Br2[Brx(OH)1−x] (x ≈ 0.51): with an almost perfect kagome layer. J. Magn. Magn. Mater. 512, 167066 (2020).

    Article 

    Google Scholar
     

  • Liu, J. et al. Gapless spin liquid behavior in a kagome Heisenberg antiferromagnet with randomly distributed hexagons of alternate bonds. Phys. Rev. B 105, 024418 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, Z. et al. Spectral evidence for dirac spinons in a kagome lattice antiferromagnet. Nat. Phys. 20, 1097 (2024).

    Article 

    Google Scholar
     

  • White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).

    Article 
    ADS 

    Google Scholar