• Skyrme, T. H. R. A non-linear field theory. Proc. R. Soc. A 260, 127–138 (1961).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18, 15–25 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics 14, 350–354 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wan, C., Cao, Q., Chen, J., Chong, A. & Zhan, Q. Toroidal vortices of light. Nat. Photonics 16, 519–522 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article 

    Google Scholar
     

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Seki, S. & Mochizuki, M. Skyrmions in Magnetic Materials (Springer, 2016).

  • Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2020).

    Article 

    Google Scholar
     

  • Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, F. et al. Hopfion rings in a cubic chiral magnet. Nature 623, 718–723 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Yu, G. et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 17, 261–268 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233–237 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Raftrey, D. & Fischer, P. Field-driven dynamics of magnetic hopfions. Phys. Rev. Lett. 127, 257201 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article 

    Google Scholar
     

  • Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article 

    Google Scholar
     

  • Yang, S. et al. Reversible conversion between skyrmions and skyrmioniums. Nat. Commun. 14, 3406 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, F. et al. Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet. Nat. Phys. 18, 863–868 (2022).

    Article 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

    Article 

    Google Scholar
     

  • Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Forbes, A., De Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article 

    Google Scholar
     

  • Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C. & Chong, C. T. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics 2, 501–505 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    Article 

    Google Scholar
     

  • Bai, C., Chen, J., Zhang, Y., Zhang, D. & Zhan, Q. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Opt. Express 28, 10320–10328 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Article 

    Google Scholar
     

  • Yang, A. et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing. Adv. Sci. 10, 2205249 (2023).

    Article 

    Google Scholar
     

  • Lei, X. et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett. 127, 237403 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Karnieli, A., Tsesses, S., Bartal, G. & Arie, A. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun. 12, 1092 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. & Fan, S. Photonic spin hopfions and monopole loops. Phys. Rev. Lett. 131, 263801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Topologically controlled multiskyrmions in photonic gradient-index lenses. Phys. Rev. Appl. 21, 024025 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, S. et al. Topological structures of energy flow: Poynting vector skyrmions. Phys. Rev. Lett. 133, 073802 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Y. J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, M. et al. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 11, 240–244 (2015).

    Article 

    Google Scholar
     

  • Yale, C. G. et al. Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photonics 10, 184–189 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Experimental observation of Berry phases in optical Möbius-strip microcavities. Nat. Photonics 17, 120–125 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Karnieli, A., Li, Y. & Arie, A. The geometric phase in nonlinear frequency conversion. Front. Phys. 17, 12301 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

    Article 

    Google Scholar
     

  • Karnieli, A. & Arie, A. Fully controllable adiabatic geometric phase in nonlinear optics. Opt. Express 26, 4920–4932 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Scully, M. O., Lamb, W. E. Jr. & Barut, A. On the theory of the Stern–Gerlach apparatus. Found. Phys. 17, 575–583 (1987).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Chen, G. et al. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics 4, 034003 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Fu, S. et al. Spin-orbit optical Hall effect. Phys. Rev. Lett. 123, 243904 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X. et al. Photonic spin-orbit coupling induced by deep-subwavelength structured light. Phys. Rev. A 109, 023522 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Feynman, R. P., Vernon, F. L. Jr. & Hellwarth, R. W. Geometrical representation of the Schrödinger equation for solving Maser problems. J. Appl. Phys. 28, 49–52 (1957).

    Article 
    ADS 

    Google Scholar
     

  • Hahn, E. L. Nuclear induction due to free Larmor precession. Phys. Rev. 77, 297–298 (1950).

    Article 
    ADS 

    Google Scholar
     

  • Berry, M. V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Karnieli, A., Trajtenberg-Mills, S., Di Domenico, G. & Arie, A. Experimental observation of the geometric phase in nonlinear frequency conversion. Optica 6, 1401–1405 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Suchowski, H., Porat, G. & Arie, A. Adiabatic processes in frequency conversion. Laser Photonics Rev. 8, 333–367 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yesharim, O. et al. Observation of the all-optical Stern–Gerlach effect in nonlinear optics. Nat. Photonics 16, 582–587 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Karnieli, A. & Arie, A. All-optical Stern-Gerlach Effect. Phys. Rev. Lett. 120, 053901 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Voloch-Bloch, N., Lereah, Y., Lilach, Y., Gover, A. & Arie, A. Generation of electron Airy beams. Nature 494, 331–335 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ornelas, P., Nape, I., de Koch, M. R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics 18, 258–266 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Gottesman, D. & Chuang, I. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y., Martínez, E. C. & Rosales-Guzmán, C. Generation of optical skyrmions with tunable topological textures. ACS Photonics 9, 296–303 (2022).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Topological transformation and free-space transport of photonic hopfions. Adv. Photonics 5, 015001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sugic, D. et al. Particle-like topologies in light. Nat. Commun. 12, 6785 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661–3669 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Hu, X. B. & Rosales-Guzmn, C. Generation and characterization of complex vector modes with digital micromirror devices: a tutorial. J. Opt. 24, 034001 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics 1, 1–57 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Berry, H. G., Gabrielse, G. & Livingston, A. E. Measurement of the Stokes parameters of light. Appl. Opt. 16, 3200–3205 (1977).

    Article 
    ADS 

    Google Scholar