• Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Hudson, R. J. et al. A framework for multiexcitonic logic. Nat. Rev. Chem. 8, 1–16 (2024).

    Article 

    Google Scholar
     

  • Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Feng, J. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7, eabj6627 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ghosh, S. et al. Microcavity exciton polaritons at room temperature. Photon. Insights 1, R04 (2022).

    Article 

    Google Scholar
     

  • Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photon. 11, 431–435 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 9, 4797 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).

    Article 
    ADS 

    Google Scholar
     

  • LaMountain, T. et al. Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. Nat. Commun. 12, 4530 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. X 10, 021011 (2020).


    Google Scholar
     

  • Emmanuele, R. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 2269 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Banerjee, R. & Liew, T. C. H. Artificial life in an exciton-polariton lattice. New J. Phys. 22, 103062 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Król, M. et al. Giant spin Meissner effect in a nonequilibrium exciton-polariton gas. Phys. Rev. B 99, 115318 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sigurdsson, H. et al. Persistent self-induced Larmor precession evidenced through periodic revivals of coherence. Phys. Rev. Lett. 129, 155301 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cerna, R. et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun. 4, 2008 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Liu, T. Y. et al. Dynamics of spin-dependent polariton–polariton interactions in two-dimensional layered halide organic perovskite microcavities. Laser Photon. Rev. 16, 2200176 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Fieramosca, A. et al. Origin of exciton–polariton interactions and decoupled dark states dynamics in 2D hybrid perovskite quantum wells. Nano Lett. 24, 8240 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. et al. Room temperature polariton spin switches based on van der Waals superlattices. Nat. Commun. 15, 7601 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. et al. Exciton polariton interactions in van der Waals superlattices at room temperature. Nat. Commun. 14, 1512 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Z. et al. Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures. Nat. Commun. 15, 1747 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Shelykh, I. A., Kavokin, A. V., Rubo, Y. G., Liew, T. & Malpuech, G. Polariton polarization-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol. 25, 013001 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Vladimirova, M. et al. Polarization controlled nonlinear transmission of light through semiconductor microcavities. Phys. Rev. B 79, 115325 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Vladimirova, M. et al. Polariton-polariton interaction constants in microcavities. Phys. Rev. B 82, 075301 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic Feshbach resonance. Nat. Phys. 10, 500–504 (2014).

    Article 

    Google Scholar
     

  • Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Fernandez, H. A., Withers, F., Russo, S. & Barnes, W. L. Electrically tuneable exciton-polaritons through free electron doping in monolayer WS2 microcavities. Adv. Opt. Mater. 7, 1900484 (2019).

    Article 

    Google Scholar
     

  • Tan, L. B. et al. Bose polaron interactions in a cavity-coupled monolayer semiconductor. Phys. Rev. X 13, 031036 (2023).


    Google Scholar
     

  • Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Choo, K., Bleu, O., Levinsen, J. & Parish, M. M. Polaronic polariton quasiparticles in a dark excitonic medium. Phys. Rev. B 109, 195432 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Sercombe, D. et al. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 3, 3489 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bastarrachea-Magnani, M. A., Camacho-Guardian, A. & Bruun, G. M. Attractive and repulsive exciton-polariton interactions mediated by an electron gas. Phys. Rev. Lett. 126, 127405 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhumagulov, Y. V. et al. Microscopic theory of exciton and trion polaritons in doped monolayers of transition metal dichalcogenides. npj Comput. Mater. 8, 92 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Masharin, M. A. et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett. 22, 9092–9099 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Masharin, M. A. et al. Room-temperature polaron-mediated polariton nonlinearity in MAPbBr3 perovskites. ACS Photon. 10, 691–698 (2023).

    Article 

    Google Scholar
     

  • Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Yu, S. et al. Transfer matrix method for interface optical-phonon modes in multiple-interface heterostructure systems. J. Appl. Phys. 82, 3363–3367 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Nonlinear valley phonon scattering under the strong coupling regime. Nat. Mater. 20, 1210–1215 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mori, N. & Ando, T. Electron–optical-phonon interaction in single and double heterostructures. Phys. Rev. B 40, 6175–6188 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Miller, B. et al. Tuning the Fröhlich exciton–phonon scattering in monolayer MoS2. Nat. Commun. 10, 807 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sie, E. J. et al. Observation of exciton redshift–blueshift crossover in monolayer WS2. Nano. Lett. 17, 4210–4216 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article 

    Google Scholar
     

  • Gunde, M. K. Vibrational modes in amorphous silicon dioxide. Phys. B 292, 286–295 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, W. et al. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5, 9677–9683 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. et al. Room temperature spin-layer locking of exciton-polariton nonlinearities. figshare https://doi.org/10.6084/m9.figshare.29974651 (2025).