• Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 

    Google Scholar
     

  • von Klitzing, K. Essay: quantum Hall effect and the new international system of units. Phys. Rev. Lett. 122, 200001 (2019).

    Article 

    Google Scholar
     

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Wen, X.-G. Colloquium: zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Jain, J. K. Composite fermion theory of exotic fractional quantum Hall effect. Annu. Rev. Condens. Matter Phys. 6, 39–62 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lin, X., Du, R. & Xie, X. Recent experimental progress of fractional quantum Hall effect: 5/2 filling state and graphene. Natl Sci. Rev. 1, 564–579 (2014).

    Article 

    Google Scholar
     

  • Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Halperin, B. I. in The Physics and Chemistry of Oxide Superconductors (eds Iye, Y. & Yasuoka, H.) 439–450 (Springer, 1992).

  • MacDonald, A. H. Introduction to the physics of the quantum Hall regime. Preprint at https://arxiv.org/abs/cond-mat/9410047 (1994).

  • Tong, D. Lectures on the quantum Hall effect. Preprint at https://arxiv.org/abs/1606.06687 (2016).

  • Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Bernevig, B. A. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

  • Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

    Article 

    Google Scholar
     

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nuckolls, K. P. & Yazdani, A. A microscopic perspective on moiré materials. Nat. Rev. Mater. 9, 460–480 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article 
    ADS 

    Google Scholar
     

  • König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. 1, 021014 (2011).

    Article 

    Google Scholar
     

  • Sheng, D. N., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Z., Yang, W., Lu, H., Zhai, D. & Yao, W. Fractional Chern insulator states in an isolated flat band of zero Chern number. Preprint at https://arxiv.org/abs/2505.09009 (2025).

  • Qi, X.-L. Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett. 107, 126803 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Claassen, M., Lee, C. H., Thomale, R., Qi, X.-L. & Devereaux, T. P. Position-momentum duality and fractional quantum Hall effect in Chern insulators. Phys. Rev. Lett. 114, 236802 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Cano, J., Millis, A. J., Liu, Z. & Yang, B. Exact Landau level description of geometry and interaction in a flatband. Phys. Rev. Lett. 127, 246403 (2021).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Ledwith, P. J., Vishwanath, A. & Parker, D. E. Vortexability: a unifying criterion for ideal fractional Chern insulators. Phys. Rev. B 108, 205144 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Estienne, B., Regnault, N. & Crépel, V. Ideal Chern bands as Landau levels in curved space. Phys. Rev. Res. 5, L032048 (2023).

    Article 

    Google Scholar
     

  • Siddharth, A. P., Rahul, R. & Shivaji, L. S. Fractional quantum Hall physics in topological flat bands. C. R. Phys. 14, 816–839 (2013).

    Article 

    Google Scholar
     

  • Wu, Y.-L., Bernevig, B. A. & Regnault, N. Zoology of fractional Chern insulators. Phys. Rev. B 85, 075116 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Behrmann, J., Liu, Z. & Bergholtz, E. J. Model fractional Chern insulators. Phys. Rev. Lett. 116, 216802 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Roy, R. Band geometry of fractional topological insulators. Phys. Rev. B 90, 165139 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. & Simon, S. H. A closed band-projected density algebra must be Girvin-MacDonald-Platzman. Phys. Rev. Lett. 134, 136502 (2025).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Simon, S. H., Harper, F. & Read, N. Fractional Chern insulators in bands with zero Berry curvature. Phys. Rev. B 92, 195104 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bernevig, B. A. & Zhang, S.-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Neupert, T., Chamon, C., Iadecola, T., Santos, L. H. & Mudry, C. Fractional (Chern and topological) insulators. Phys. Scr. 2015, 014005 (2015).

    Article 

    Google Scholar
     

  • Stern, A. Fractional topological insulators: a pedagogical review. Annu. Rev. Condens. Matter Phys. 7, 349–368 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Polshyn, H. et al. Topological charge density waves at half-integer filling of a moiré superlattice. Nat. Phys. 18, 42–47 (2022).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional Chern insulator states in twisted bilayer graphene: an analytical approach. Phys. Rev. Res. 2, 023237 (2020).

    Article 

    Google Scholar
     

  • Abouelkomsan, A., Liu, Z. & Bergholtz, E. J. Particle-hole duality, emergent Fermi liquids, and fractional Chern insulators in moiré flatbands. Phys. Rev. Lett. 124, 106803 (2020).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Repellin, C. & Senthil, T. Chern bands of twisted bilayer graphene: fractional Chern insulators and spin phase transition. Phys. Rev. Res. 2, 023238 (2020).

    Article 

    Google Scholar
     

  • Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Mera, B. & Ozawa, T. Kähler geometry and Chern insulators: relations between topology and the quantum metric. Phys. Rev. B 104, 045104 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mera, B. & Ozawa, T. Engineering geometrically flat Chern bands with Fubini-Study Kähler structure. Phys. Rev. B 104, 115160 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Jia, Y. et al. Moiré fractional Chern insulators. I. First-principles calculations and continuum models of twisted bilayer MoTe2. Phys. Rev. B 109, 205121 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Yu, H., Chen, M. & Yao, W. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Natl Sci. Rev. 7, 12–20 (2020).

    Article 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Xu, C., Mao, N., Zeng, T. & Zhang, Y. Multiple Chern bands in twisted MoTe2 and possible non-Abelian states. Phys. Rev. Lett. 134, 066601 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Li, H., Kumar, U., Sun, K. & Lin, S.-Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).

    Article 

    Google Scholar
     

  • Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. 13, 031037 (2023).

    Article 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Knüppel, P. et al. Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers. Nat. Commun. 16, 1959 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Nature 635, 578–583 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Ferromagnetism and topology of the higher flat band in a fractional Chern insulator. Nat. Phys. https://doi.org/10.1038/s41567-025-02804-0 (2025).

  • Xu, F. et al. Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2. Nat. Phys. https://doi.org/10.1038/s41567-025-02803-1 (2025).

  • Kang, K. et al. Double quantum spin Hall phase in moiré WSe2. Nano Lett. 24, 14901–14907 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Abouelkomsan, A. & Fu, L. Non-Abelian spin Hall insulator. Phys. Rev. Res. 7, 023083 (2025).

    Article 

    Google Scholar
     

  • Jian, C. M., Cheng, M. & Xu, C. Minimal fractional topological insulator in half-filled conjugate moiré Chern bands. Phys. Rev. X 15, 021063 (2025).


    Google Scholar
     

  • Sodemann Villadiego, I. Halperin states of particles and holes in ideal time reversal invariant pairs of Chern bands and the fractional quantum spin Hall effect in moiré MoTe2. Phys. Rev. B 110, 045114 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y.-H. Non-Abelian and Abelian descendants of a vortex spin liquid: fractional quantum spin Hall effect in twisted MoTe2. Phys. Rev. B 110, 155102 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kwan, Y. H. et al. When could Abelian fractional topological insulators exist in twisted MoTe2 (and other systems). Preprint at https://arxiv.org/abs/2407.02560 (2024).

  • Min, H. & MacDonald, A. H. Chiral decomposition in the electronic structure of graphene multilayers. Phys. Rev. B 77, 155416 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Koshino, M. & McCann, E. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Han, T. et al. Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene. Science 384, 647–651 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Z. et al. Extended quantum anomalous Hall states in graphene/hBN moiré superlattices. Nature 637, 1090–1095 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Xie, J. et al. Tunable fractional Chern insulators in rhombohedral graphene superlattices. Nat. Mater. 24, 1042–1048 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Choi, Y. et al. Electric field control of superconductivity and quantized anomalous Hall effects in rhombohedral tetralayer graphene. Nature 639, 342–347 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Aronson, S. H.et al. Displacement field-controlled fractional Chern insulators and charge density waves in a graphene/hBN moiré superlattice. Phys. Rev. X 15, 031026 (2024).


    Google Scholar
     

  • Dong, Z., Patri, A. S. & Senthil, T. Theory of quantum anomalous Hall phases in pentalayer rhombohedral graphene moiré structures. Phys. Rev. Lett. 133, 206502 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, B., Yang, H. & Zhang, Y. H. Fractional quantum anomalous Hall effects in rhombohedral multilayer graphene in the moir‚less limit and in Coulomb imprinted superlattice. Phys. Rev. Lett. 133, 206504 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Dong, J. et al. Anomalous Hall crystals in rhombohedral multilayer graphene. I. Interaction-driven Chern bands and fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 133, 206503 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Halbertal, D. et al. Multilayered atomic relaxation in van der Waals heterostructures. Phys. Rev. 13, 011026 (2023).

    Article 

    Google Scholar
     

  • Kwan, Y. H. et al. Moiré fractional Chern insulators III: Hartree-Fock phase diagram, magic angle regime for Chern insulator states, the role of the moir‚ potential and Goldstone gaps in rhombohedral graphene superlattices. Phys. Rev. B 112, 075109 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Guo, Z. & Liu, J. Correlation stabilized anomalous Hall crystal in bilayer graphene. Preprint at https://arxiv.org/abs/2409.14658 (2024).

  • Yu, J., Herzog-Arbeitman, J., Kwan, Y. H., Regnault, N. & Bernevig, B. A. Moiré fractional Chern insulators IV: fluctuation-driven collapse of FCIs in multi-band exact diagonalization calculations on rhombohedral graphene. Phys. Rev. B 112, 075110 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Han, T. et al. Signatures of chiral superconductivity in rhombohedral graphene. Nature 643, 654–661 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Das Sarma, S. & Xie, M. Thermal crossover from a Chern insulator to a fractional Chern insulator in pentalayer graphene. Phys. Rev. B 110, 155148 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Patri, A. S., Dong, Z. & Senthil, T. Extended quantum anomalous Hall effect in moiré structures: phase transitions and transport. Phys. Rev. B 110, 245115 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Chen, F., Luo, W.-W., Zhu, W. & Sheng, D. N. Robust non-Abelian even-denominator fractional Chern insulator in twisted bilayer MoTe2. Nat. Commun. 16, 2115 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Reddy, A. P., Paul, N., Abouelkomsan, A. & Fu, L. Non-Abelian fractionalization in topological minibands. Phys. Rev. Lett. 133, 166503 (2024).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Higher Landau-level analogs and signatures of non-Abelian states in twisted bilayer MoTe2. Phys. Rev. Lett. 134, 076503 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–687 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, Y. et al. 2D theoretically twistable material database. Preprint at https://arxiv.org/abs/2411.09741 (2024).

  • Sterdyniak, A., Repellin, C., Bernevig, B. A. & Regnault, N. Series of Abelian and non-Abelian states in C>1 fractional Chern insulators. Phys. Rev. B 87, 205137 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Song, X.-Y., Zhang, Y.-H. & Senthil, T. Phase transitions out of quantum Hall states in moiré materials. Phys. Rev. B 109, 085143 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Feldman, D. E. & Halperin, B. I. Fractional charge and fractional statistics in the quantum Hall effects. Rep. Prog. Phys. 84, 076501 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Choi, Y. et al. Superconductivity and quantized anomalous Hall effect in rhombohedral graphene. Nature 639, 342–347 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Xu, F. et al. Signatures of unconventional superconductivity near reentrant and fractional quantum anomalous Hall insulators. Preprint at https://arxiv.org/abs/2504.06972 (2025).

  • Morales-Durán, N., Shi, J. & MacDonald, A. H. Fractionalized electrons in moiré materials. Nat. Rev. Phys. 6, 349–351 (2024).

    Article 

    Google Scholar
     

  • Morales-Durán, N., Wei, N., Shi, J. & MacDonald, A. H. Magic angles and fractional Chern insulators in twisted homobilayer transition metal dichalcogenides. Phys. Rev. Lett. 132, 096602 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Reddy, A. P., Alsallom, F., Zhang, Y., Devakul, T. & Fu, L. Fractional quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2. Phys. Rev. B 108, 085117 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Yu, J. et al. Fractional Chern insulators versus nonmagnetic states in twisted bilayer MoTe2. Phys. Rev. B 109, 045147 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Călugăru, D. et al. A new moiré platform based on M-point twisting. Nature 643, 376–381 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Lei, C., Mahon, P. T. & MacDonald, A. H. Moiré band theory for M-valley twisted transition metal dichalcogenides. Preprint at https://arxiv.org/abs/2411.18828 (2024).