• Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, W. et al. Coherent dynamics of multi-spin \({\rm V_{\rm{B}}^{-}}\) center in hexagonal boron nitride. Nat. Commun. 13, 5713 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gao, X. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 21, 1024 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gong, R. et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. Nat. Commun. 14, 3299 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Healey, A. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87 (2023).

    Article 

    Google Scholar
     

  • Ramsay, A. J. et al. Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 14, 461 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rizzato, R. et al. Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing. Nat. Commun. 14, 5089 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Durand, A. et al. Optically active spin defects in few-layer thick hexagonal boron nitride. Phys. Rev. Lett. 131, 116902 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Robertson, I. O. et al. Detection of paramagnetic spins with an ultrathin van der Waals quantum sensor. ACS Nano 17, 13408 (2023).

    Article 

    Google Scholar
     

  • Gao, X. et al. Quantum sensing of paramagnetic spins in liquids with spin qubits in hexagonal boron nitride. ACS Photonics 10, 2894 (2023).

    Article 

    Google Scholar
     

  • Zhou, J. et al. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. Sci. Adv. 10, eadk8495 (2024).

    Article 

    Google Scholar
     

  • Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405 (2018).

    Article 

    Google Scholar
     

  • Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836 (2023).

    Article 

    Google Scholar
     

  • Ivády, V. et al. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride. npj Comput. Mater. 6, 41 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Reimers, J. R. et al. Photoluminescence, photophysics, and photochemistry of the \({\rm V_{\rm{B}}^{-}}\) defect in hexagonal boron nitride. Phys. Rev. B 102, 144105 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kianinia, M., White, S., Fröch, J. E., Bradac, C. & Aharonovich, I. Generation of spin defects in hexagonal boron nitride. ACS Photonics 7, 2147 (2020).

    Article 

    Google Scholar
     

  • Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, W. et al. Temperature-dependent energy-level shifts of spin defects in hexagonal boron nitride. ACS Photonics 8, 1889 (2021).

    Article 

    Google Scholar
     

  • Mathur, N. et al. Excited-state spin-resonance spectroscopy of \({\rm V_{\rm{B}}^{-}}\) defect centers in hexagonal boron nitride. Nat. Commun. 13, 3233 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Haykal, A. et al. Decoherence of \({\rm V_{\rm{B}}^{-}}\) spin defects in monoisotopic hexagonal boron nitride. Nat. Commun. 13, 4347 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Guo, N.-J. et al. Coherent control of an ultrabright single spin in hexagonal boron nitride at room temperature. Nat. Commun. 14, 2893 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y.-Z. et al. Laser direct writing of visible spin defects in hexagonal boron nitride for applications in spin-based technologies. ACS Appl. Nano Mater. 6, 6407 (2023).

    Article 

    Google Scholar
     

  • Scholten, S. C. et al. Multi-species optically addressable spin defects in a van der Waals material. Nat. Commun. 15, 6727 (2024).

    Article 

    Google Scholar
     

  • Patel, R. N. et al. Room temperature dynamics of an optically addressable single spin in hexagonal boron nitride. Nano Lett. 24, 7623 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Singh, P. et al. Violet to near-infrared optical addressing of spin pairs in hexagonal boron nitride. Adv. Mater. 37, 2414846 (2025).

    Article 

    Google Scholar
     

  • Auburger, P. & Gali, A. Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits. Phys. Rev. B 104, 075410 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Pinilla, F. et al. Spin-active single photon emitters in hexagonal boron nitride from carbon-based defects. Phys. Scr. 98, 095505 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Golami, O. et al. Ab initio and group theoretical study of properties of a carbon trimer defect in hexagonal boron nitride. Phys. Rev. B 105, 184101 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tan, Q. et al. Donor-acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Benedek, Z. et al. Symmetric carbon tetramers forming spin qubits in hexagonal boron nitride. npj Comput. Mater. 9, 187 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hunter, D., Hoff, A. & Hore, P. Theoretical calculations of RYDMR effects in photosynthetic bacteria. Chem. Phys. Lett. 134, 6 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51 (1989).

    Article 

    Google Scholar
     

  • Woodward, J. R. Radical pairs in solution. Prog. React. Kinet. Mech. 27, 165 (2002).

    Article 

    Google Scholar
     

  • Evans, E. W. et al. Magnetic field effects in flavoproteins and related systems. Interface Focus 3, 20130037 (2013).

    Article 

    Google Scholar
     

  • Luo, J., Geng, Y., Rana, F. & Fuchs, G. D. Room temperature optically detected magnetic resonance of single spins in GaN. Nat. Mater. 23, 512 (2024).

    Article 
    ADS 

    Google Scholar
     

  • McCamey, D. R. et al. Hyperfine-field-mediated spin beating in electrostatically bound charge carrier pairs. Phys. Rev. Lett. 104, 017601 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lee, S.-Y. et al. Tuning hyperfine fields in conjugated polymers for coherent organic spintronics. J. Am. Chem. Soc. 133, 2019 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kosugi, N., Matsuo, S., Konno, K. & Hatakenaka, N. Theory of damped Rabi oscillations. Phys. Rev. B 72, 172509 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Davies, J. Optically-detected magnetic resonance studies of II-VI compounds. J. Cryst. Growth 86, 599 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Boehme, C. & Lips, K. Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance. Phys. Rev. B 68, 245105 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Dean, P. Inter-impurity recombinations in semiconductors. Prog. Solid State Chem. 8, 1–126 (1973).

    Article 

    Google Scholar
     

  • Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, A. et al. Localized creation of yellow single photon emitting carbon complexes in hexagonal boron nitride. APL Mater. 11, 071108 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Pelliciari, J. et al. Elementary excitations of single-photon emitters in hexagonal boron nitride. Nat. Mater. 23, 1230–1236 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, W. et al. Experimental observation of spin defects in van der Waals material GeS2. Preprint at https://arxiv.org/abs/2410.18892 (2024).

  • Stern, H. L. et al. A quantum coherent spin in hexagonal boron nitride at ambient conditions. Nat. Mater. 23, 1379–1385 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Gao, X. et al. Single nuclear spin detection and control in a van der Waals material. Nature 643, 943–949 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Onodera, M. et al. Carbon-rich domain in hexagonal boron nitride: carrier mobility degradation and anomalous bending of the Landau fan diagram in adjacent graphene. Nano Lett. 19, 7282 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jara, C. et al. First-principles identification of single photon emitters based on carbon clusters in hexagonal boron nitride. J. Phys. Chem. A 125, 1325 (2021).

    Article 

    Google Scholar
     

  • Linderälv, C., Wieczorek, W. & Erhart, P. Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride. Phys. Rev. B 103, 115421 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lillie, S. E. et al. Laser modulation of superconductivity in a cryogenic wide-field nitrogen-vacancy microscope. Nano Lett. 20, 1855 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bluvstein, D., Zhang, Z. & Jayich, A. C. B. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys. Rev. Lett. 122, 076101 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Johnston, D. C. Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys. Rev. B 74, 184430 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Campaioli, F., Cole, J. H. & Hapuarachchi, H. Quantum master equations: tips and tricks for quantum optics, quantum computing, and beyond. PRX Quantum 5, 020202 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van de Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article 

    Google Scholar
     

  • Jones, R. O. & Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Szász, K., Hornos, T., Marsman, M. & Gali, A. Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization. Phys. Rev. B 88, 075202 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Runge, E. & Gross, E. K. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Casida, M. E. in Recent Advances in Density Functional Methods, Part I (ed. Chong, D. P.) 155–192 (World Scientific, 1995).

  • Dreuw, A. & Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009 (2005).

    Article 

    Google Scholar
     

  • Neese, F. Software update: the ORCA program system–version 5.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12, e1606 (2022).


    Google Scholar
     

  • Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Article 

    Google Scholar
     

  • Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Benedek, Z., Ganyecz, Á., Pershin, A., Ivády, V. & Barcza, G. Accurate and convergent energetics of color centers by wavefunction theory. Preprint at https://arxiv.org/abs/2406.05092 (2024).