Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540 (2020).
Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).
Liu, W. et al. Coherent dynamics of multi-spin \({\rm V_{\rm{B}}^{-}}\) center in hexagonal boron nitride. Nat. Commun. 13, 5713 (2022).
Gao, X. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 21, 1024 (2022).
Gong, R. et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. Nat. Commun. 14, 3299 (2023).
Healey, A. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87 (2023).
Ramsay, A. J. et al. Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 14, 461 (2023).
Rizzato, R. et al. Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing. Nat. Commun. 14, 5089 (2023).
Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38 (2018).
Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906 (2021).
Durand, A. et al. Optically active spin defects in few-layer thick hexagonal boron nitride. Phys. Rev. Lett. 131, 116902 (2023).
Robertson, I. O. et al. Detection of paramagnetic spins with an ultrathin van der Waals quantum sensor. ACS Nano 17, 13408 (2023).
Gao, X. et al. Quantum sensing of paramagnetic spins in liquids with spin qubits in hexagonal boron nitride. ACS Photonics 10, 2894 (2023).
Zhou, J. et al. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. Sci. Adv. 10, eadk8495 (2024).
Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405 (2018).
Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836 (2023).
Ivády, V. et al. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride. npj Comput. Mater. 6, 41 (2020).
Reimers, J. R. et al. Photoluminescence, photophysics, and photochemistry of the \({\rm V_{\rm{B}}^{-}}\) defect in hexagonal boron nitride. Phys. Rev. B 102, 144105 (2020).
Kianinia, M., White, S., Fröch, J. E., Bradac, C. & Aharonovich, I. Generation of spin defects in hexagonal boron nitride. ACS Photonics 7, 2147 (2020).
Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708 (2021).
Liu, W. et al. Temperature-dependent energy-level shifts of spin defects in hexagonal boron nitride. ACS Photonics 8, 1889 (2021).
Mathur, N. et al. Excited-state spin-resonance spectroscopy of \({\rm V_{\rm{B}}^{-}}\) defect centers in hexagonal boron nitride. Nat. Commun. 13, 3233 (2022).
Haykal, A. et al. Decoherence of \({\rm V_{\rm{B}}^{-}}\) spin defects in monoisotopic hexagonal boron nitride. Nat. Commun. 13, 4347 (2022).
Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321 (2021).
Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079 (2021).
Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).
Guo, N.-J. et al. Coherent control of an ultrabright single spin in hexagonal boron nitride at room temperature. Nat. Commun. 14, 2893 (2023).
Yang, Y.-Z. et al. Laser direct writing of visible spin defects in hexagonal boron nitride for applications in spin-based technologies. ACS Appl. Nano Mater. 6, 6407 (2023).
Scholten, S. C. et al. Multi-species optically addressable spin defects in a van der Waals material. Nat. Commun. 15, 6727 (2024).
Patel, R. N. et al. Room temperature dynamics of an optically addressable single spin in hexagonal boron nitride. Nano Lett. 24, 7623 (2024).
Singh, P. et al. Violet to near-infrared optical addressing of spin pairs in hexagonal boron nitride. Adv. Mater. 37, 2414846 (2025).
Auburger, P. & Gali, A. Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits. Phys. Rev. B 104, 075410 (2021).
Pinilla, F. et al. Spin-active single photon emitters in hexagonal boron nitride from carbon-based defects. Phys. Scr. 98, 095505 (2023).
Golami, O. et al. Ab initio and group theoretical study of properties of a carbon trimer defect in hexagonal boron nitride. Phys. Rev. B 105, 184101 (2022).
Tan, Q. et al. Donor-acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331 (2022).
Benedek, Z. et al. Symmetric carbon tetramers forming spin qubits in hexagonal boron nitride. npj Comput. Mater. 9, 187 (2023).
Hunter, D., Hoff, A. & Hore, P. Theoretical calculations of RYDMR effects in photosynthetic bacteria. Chem. Phys. Lett. 134, 6 (1987).
Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51 (1989).
Woodward, J. R. Radical pairs in solution. Prog. React. Kinet. Mech. 27, 165 (2002).
Evans, E. W. et al. Magnetic field effects in flavoproteins and related systems. Interface Focus 3, 20130037 (2013).
Luo, J., Geng, Y., Rana, F. & Fuchs, G. D. Room temperature optically detected magnetic resonance of single spins in GaN. Nat. Mater. 23, 512 (2024).
McCamey, D. R. et al. Hyperfine-field-mediated spin beating in electrostatically bound charge carrier pairs. Phys. Rev. Lett. 104, 017601 (2010).
Lee, S.-Y. et al. Tuning hyperfine fields in conjugated polymers for coherent organic spintronics. J. Am. Chem. Soc. 133, 2019 (2011).
Kosugi, N., Matsuo, S., Konno, K. & Hatakenaka, N. Theory of damped Rabi oscillations. Phys. Rev. B 72, 172509 (2005).
Davies, J. Optically-detected magnetic resonance studies of II-VI compounds. J. Cryst. Growth 86, 599 (1988).
Boehme, C. & Lips, K. Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance. Phys. Rev. B 68, 245105 (2003).
Dean, P. Inter-impurity recombinations in semiconductors. Prog. Solid State Chem. 8, 1–126 (1973).
Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 (2016).
Kumar, A. et al. Localized creation of yellow single photon emitting carbon complexes in hexagonal boron nitride. APL Mater. 11, 071108 (2023).
Pelliciari, J. et al. Elementary excitations of single-photon emitters in hexagonal boron nitride. Nat. Mater. 23, 1230–1236 (2024).
Liu, W. et al. Experimental observation of spin defects in van der Waals material GeS2. Preprint at https://arxiv.org/abs/2410.18892 (2024).
Stern, H. L. et al. A quantum coherent spin in hexagonal boron nitride at ambient conditions. Nat. Mater. 23, 1379–1385 (2024).
Gao, X. et al. Single nuclear spin detection and control in a van der Waals material. Nature 643, 943–949 (2025).
Onodera, M. et al. Carbon-rich domain in hexagonal boron nitride: carrier mobility degradation and anomalous bending of the Landau fan diagram in adjacent graphene. Nano Lett. 19, 7282 (2019).
Jara, C. et al. First-principles identification of single photon emitters based on carbon clusters in hexagonal boron nitride. J. Phys. Chem. A 125, 1325 (2021).
Linderälv, C., Wieczorek, W. & Erhart, P. Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride. Phys. Rev. B 103, 115421 (2021).
Lillie, S. E. et al. Laser modulation of superconductivity in a cryogenic wide-field nitrogen-vacancy microscope. Nano Lett. 20, 1855 (2020).
Bluvstein, D., Zhang, Z. & Jayich, A. C. B. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys. Rev. Lett. 122, 076101 (2019).
Johnston, D. C. Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys. Rev. B 74, 184430 (2006).
Campaioli, F., Cole, J. H. & Hapuarachchi, H. Quantum master equations: tips and tricks for quantum optics, quantum computing, and beyond. PRX Quantum 5, 020202 (2024).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).
Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van de Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).
Jones, R. O. & Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689 (1989).
Szász, K., Hornos, T., Marsman, M. & Gali, A. Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization. Phys. Rev. B 88, 075202 (2013).
Runge, E. & Gross, E. K. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984).
Casida, M. E. in Recent Advances in Density Functional Methods, Part I (ed. Chong, D. P.) 155–192 (World Scientific, 1995).
Dreuw, A. & Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009 (2005).
Neese, F. Software update: the ORCA program system–version 5.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12, e1606 (2022).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).
Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).
Benedek, Z., Ganyecz, Á., Pershin, A., Ivády, V. & Barcza, G. Accurate and convergent energetics of color centers by wavefunction theory. Preprint at https://arxiv.org/abs/2406.05092 (2024).