• Nilsson, A. & Pettersson, L. G. M. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Li, S. et al. Attosecond-pump attosecond-probe X-ray spectroscopy of liquid water. Science 383, 1118–1122 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Angell, C. A., Sichina, W. J. & Oguni, M. Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998–1002 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Huang, C. et al. Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle X-ray scattering. J. Chem. Phys. 133, 134504 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Palmer, J. C. et al. Metastable liquid–liquid transition in a molecular model of water. Nature 510, 385–388 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Debenedetti, P. G., Sciortino, F. & Zerze, G. H. Second critical point in two realistic models of water. Science 369, 289–292 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. H. et al. Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science 358, 1589–1593 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kim, K. H. et al. Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure. Science 370, 978–982 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pathak, H. et al. Enhancement and maximum in the isobaric specific-heat capacity measurements of deeply supercooled water using ultrafast calorimetry. Proc. Natl Acad. Sci. USA 118, e2018379118 (2021).

    Article 

    Google Scholar
     

  • Torre, R., Bartolini, P. & Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 428, 296–299 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Taschin, A., Bartolini, P., Eramo, R., Righini, R. & Torre, R. Evidence of two distinct local structures of water from ambient to supercooled conditions. Nat. Commun. 4, 2401 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dehaoui, A., Issenmann, B. & Caupin, F. Viscosity of deeply supercooled water and its coupling to molecular diffusion. Proc. Natl Acad. Sci. USA 112, 12020–12025 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Johari, G. P., Hallbrucker, A. & Mayer, E. The glass–liquid transition of hyperquenched water. Nature 330, 552–553 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Hallbrucker, A., Mayer, E. & Johari, G. P. The heat capacity and glass transition of hyperquenched glassy water. Philos. Mag. B 60, 179–187 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Amann-Winkel, K. et al. Water’s second glass transition. Proc. Natl Acad. Sci. USA 110, 17720–17725 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Sciortino, F., Gallo, P., Tartaglia, P. & Chen, S.-H. Supercooled water and the kinetic glass transition. Phys. Rev. E 54, 6331–6343 (1996).

    Article 
    ADS 

    Google Scholar
     

  • De Marzio, M., Camisasca, G., Rovere, M. & Gallo, P. Microscopic origin of the fragile to strong crossover in supercooled water: the role of activated processes. J. Chem. Phys. 146, 084502 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Saito, S. Unraveling the dynamic slowdown in supercooled water: the role of dynamic disorder in jump motions. J. Chem. Phys. 160, 194506 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Shi, R., Russo, J. & Tanaka, H. Origin of the emergent fragile-to-strong transition in supercooled water. Proc. Natl Acad. Sci. USA 115, 9444–9449 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y., Petrik, N. G., Smith, R. S., Kay, B. D. & Kimmel, G. A. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K. Proc. Natl Acad. Sci. USA 113, 14921–14925 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sellberg, J. A. et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Esmaeildoost, N. et al. Anomalous temperature dependence of the experimental X-ray structure factor of supercooled water. J. Chem. Phys. 155, 214501 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Cowan, M. L. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Ramasesha, K., De Marco, L., Mandal, A. & Tokmakoff, A. Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5, 935–940 (2013).

    Article 

    Google Scholar
     

  • Markmann, V. et al. Real-time structural dynamics of the ultrafast solvation process around photo-excited aqueous halides. Chem. Sci. 15, 11391–11401 (2024).

    Article 

    Google Scholar
     

  • Prat, E. et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photon. 14, 748–754 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. H. et al. Anisotropic X-ray scattering of transiently oriented water. Phys. Rev. Lett. 125, 076002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kjær, K. S. et al. Introducing a standard method for experimental determination of the solvent response in laser pump, X-ray probe time-resolved wide-angle X-ray scattering experiments on systems in solution. Phys. Chem. Chem. Phys. 15, 15003–15016 (2013).

    Article 

    Google Scholar
     

  • Ihee, H. et al. Ultrafast X-ray diffraction of transient molecular structures in solution. Science 309, 1223–1227 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Gallo, P. & Rovere, M. Mode coupling and fragile to strong transition in supercooled TIP4P water. J. Chem. Phys. 137, 164503 (2012).

    Article 
    ADS 

    Google Scholar
     

  • De Marzio, M., Camisasca, G., Rovere, M. & Gallo, P. Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water. J. Chem. Phys. 144, 074503 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Price, W. S., Ide, H. & Arata, Y. Self-diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements. J. Phys. Chem. A 103, 448–450 (1999).

    Article 

    Google Scholar
     

  • Angell, C. A. & Sare, E. J. Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J. Chem. Phys. 52, 1058–1068 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Gallo, P. et al. Advances in the study of supercooled water. Eur. Phys. J. E 44, 143 (2021).

    Article 

    Google Scholar
     

  • Tanaka, H. Simple physical model of liquid water. J. Chem. Phys. 112, 799–809 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Starr, F. W., Angell, C. A. & Stanley, H. E. Prediction of entropy and dynamic properties of water below the homogeneous nucleation temperature. Physica A 323, 51–66 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Caupin, F. Predictions for the properties of water below its homogeneous crystallization temperature revisited. J. Non-Cryst. Solids X 14, 100090 (2022).


    Google Scholar
     

  • Angell, C. A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319, 582–587 (2008).

    Article 

    Google Scholar
     

  • Xu, L. et al. Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc. Natl Acad. Sci. USA 102, 16558–16562 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Singh, R. S., Biddle, J. W., Debenedetti, P. G. & Anisimov, M. A. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water. J. Chem. Phys. 144, 144504 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ingold, G. et al. Experimental station Bernina at SwissFEL: condensed matter physics on femtosecond time scales investigated by X-ray diffraction and spectroscopic methods. J. Synchrotron Radiat. 26, 874–886 (2019).

    Article 

    Google Scholar
     

  • Knudsen, M. Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann. Phys. 352, 697–708 (1915).

    Article 

    Google Scholar
     

  • Maa, J. R. Evaporation coefficient of liquids. Ind. Eng. Chem. Fundam. 6, 504–518 (1967).

    Article 

    Google Scholar
     

  • Faubel, M., Schlemmer, S. & Toennies, J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D 10, 269–277 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Goy, C. et al. Refractive index of supercooled water down to 230.3 K in the wavelength range between 534 and 675 nm. J. Phys. Chem. Lett. 13, 11872–11877 (2022).

    Article 

    Google Scholar
     

  • Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).

    Article 
    ADS 

    Google Scholar
     

  • James, F. & Roos, M. Minuit—a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Abascal, J. L. F., Sanz, E., García Fernández, R. & Vega, C. A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 122, 234511 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Saito, S., Bagchi, B. & Ohmine, I. Crucial role of fragmented and isolated defects in persistent relaxation of deeply supercooled water. J. Chem. Phys. 149, 124504 (2018).

    Article 
    ADS 

    Google Scholar