• Bañuelos, G. S., Dhillon, K. S. & Banga, S. S. Oilseed Brassicas. In Biofuel Crops: Production, Physiology and Genetics (ed. Singh, B. P.) 339–368 (CABI, 2013).

    Chapter 

    Google Scholar
     

  • Bassegio, D. & Zanotto, M. D. Growth, yield, and oil content of Brassica species under Brazilian tropical conditions. Bragantia 79, 203–212 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hossain, Z. et al. Establishment, yield and yield components of Brassicaceae oilseeds as potential biofuel feedstock. Ind. Crops Prod. 141, 111800 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Banga, S. K., Kumar, P., Bhajan, R., Singh, D. & Banga, S. S. Genetics and breeding. In Brassica Oilseeds: Breeding and Management (eds Kumar, A. et al.) 11–41 (CABI, 2015).

    Chapter 

    Google Scholar
     

  • Basunanda, P. et al. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 120, 271. https://doi.org/10.1007/s00122-009-1133-z (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, J. Q. et al. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci. Rep. 5, 14481 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadras, V. O. Evolutionary aspects of the trade-off between seed size and number 437 in crops. Field Crops Res. 100, 125–138 (2007).

    Article 

    Google Scholar
     

  • Kaur, J. et al. Genome wide association mapping and candidate gene analysis for pod shatter resistance in Brassica juncea and its progenitor species. Mol. Biol. Rep. 47, 2963–2974. https://doi.org/10.1007/s11033-020-05384-9 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, A. R. Crops and the seed mass–seed output trade-off in plants. Int. J. Plant Sci. 182, 84–90 (2021).

    Article 

    Google Scholar
     

  • Pechan, P. M. & Morgan, D. G. The use of radiography in studies of plant development in vivo. Planta 159, 476–481 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke, J. M. & Simpson, G. M. Influence of irrigation and seeding rates on yield and yield components of Brassica napus cv. Tower. Can. J. Plant Sci. 58, 731–737 (1978).

    Article 

    Google Scholar
     

  • Priyamedha, Singh, V. V., Chauhan, J. S., Meena, M. L. & Mishra, D. C. Correlation and path coefficient analysis for yield and yield components in early generation lines of Indian mustard (Brassica juncea L.). Curr. Adv. Agri. Sci. 5, 37–40 (2013).


    Google Scholar
     

  • Kuai, J. et al. Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Res. 180, 10–20 (2015).

    Article 

    Google Scholar
     

  • Khan, N. et al. Genome – wide identification, classification, and expression pattern of homeobox gene family in Brassica rapa under various stresses. Sci. Rep. 8, 16265. https://doi.org/10.1038/s41598-018-34448-x (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pechan, P. M. & Keller, W. A. Identification of potentially embryogenic microspores in Brassica napus. Physiol. Plant. 74, 377–384 (1988).

    Article 

    Google Scholar
     

  • Diepenbrock, W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Res. 67, 35–49 (2000).

    Article 

    Google Scholar
     

  • Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. & Ruan, Y. L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol. 160, 777–787 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gegas, V. C. et al. A genetic framework for grain size and shape variation in wheat. Plant Cell 22, 1046–1056 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kesavan, M., Song, J. T. & Seo, H. S. Seed size: A priority trait in cereal crops. Physiol. Plant. 147, 113–120 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Sun, J., Cao, X. & Song, X. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol. 169, 2118–2128 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allorent, G. et al. Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana. New Phytol. 205, 707–719 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghildiyal, M. Contribution of leaf and pod photosynthesis to seed yield in mustard. Photosynthetica 26, 91–94 (1992).


    Google Scholar
     

  • Hu, Z., Huang, S., Sun, M., Wang, H. & Hua, W. Development and application of single nucleotide polymorphism markers in the polyploidy Brassica napus by 454 sequencing of expressed sequence tags. Plant Breed. 131, 293–299 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Iqbal, S., Khan, H. Z. & Shaheen, H. Growth and yield responses of mungbean to different levels of phosphorous application under different tillage systems. Int. J. Agri. Appl. Sci. 4, 22–27 (2012).


    Google Scholar
     

  • Wang, H., Hou, L., Wang, M. & Mao, P. Contribution of the pod wall to seed grain filling in alfalfa. Sci. Rep. 6, 26586. https://doi.org/10.1038/srep26586 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singal, H. R., Talwar, G., Dua, A. & Singh, R. Pod photosynthesis and seed dark CO2 fixation support oil synthesis in developing Brassica seeds. J. Biosci. 20, 49–58 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848. https://doi.org/10.1038/nature07895 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Harlan, J. R. Crops and Man 2nd edn. (American Society of Agronomy and Crop Science Society of America, 1992).

    Book 

    Google Scholar
     

  • Li, C., Zhou, A. & Sang, T. Rice domestication by reducing shattering. Science 311(5769), 1936–1939. https://doi.org/10.1126/science.1123604 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sang, T. & Ge, S. Genetics and phylogenetics of rice domestication. Curr. Opin. Genet. Dev. 17, 533–538 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, M. K. et al. Genome-wide association study uncovers key genomic regions governing agro-morphological and quality traits in Indian mustard [Brassica juncea (L.) Czern. and Coss.]. PLoS ONE 20(4), e0322120. https://doi.org/10.1371/journal.pone.0322120 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raman, R. et al. Identification and validation of genomic regions for pod shatter resistance in Brassica rapa using QTL-seq and traditional QTL mapping. BMC Plant Biol. 25, 175. https://doi.org/10.1186/s12870-025-06155-z (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daware, A. V. et al. Regional association analysis of MetaQTLs delineates candidate grain size genes in rice. Front Plant Sci. 8, 260976. https://doi.org/10.3389/fpls.2017.00807 (2017).

    Article 

    Google Scholar
     

  • Sugimoto-Shirasu, K. & Roberts, K. “Big it up”: Endoreduplication and cell-size control in plants. Curr. Opin. Plant Biol. 6, 544–553 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, B., Li, C., Li, Y. & Yu, H. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nat. Plants 6, 1146–1157 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia, D., Gerald, J. N. F. & Berger, F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17, 52–60 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schruff, M. C. et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133, 251–261 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adamski, N. M., Anastasiou, E., Eriksson, S., O’Neill, C. M. & Lenhard, M. Local maternal control of seed size by KLUH/ CYP78A5 – dependent growth signaling. PNAS 106, 20115–20120 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, W., Wang, Z., Cui, R., Li, J. & Li, Y. Maternal control of seed size by EOD3/ CYP78A6 in Arabidopsis thaliana. Plant J. 70, 929–939 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohto, M. A., Floyd, S. K., Fischer, R. L., Goldberg, R. B. & Harada, J. J. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex. Plant Reprod. 22, 277–289 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagstaff, C., Yang, T. J., Stead, A. D., Buchanan-Wollaston, V. & Roberts, J. A. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J. 57, 690–705 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Identification and characterization of the first cytokinin glycosyltransferase from rice. Rice 12, 19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, W. et al. Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol. 142, 1160–1168 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Nie, X., Tan, J. L. & Berger, F. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. PNAS 110, 15479–15484 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrándiz, C., Liljegren, S. J. & Yanofsky, M. F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289, 436–438 (2000).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liljegren, S. J. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770. https://doi.org/10.1038/35008089 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajani, S. & Sundaresan, V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr. Biol. 11, 1914–1922 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Østergaard, L., Kempin, S. A., Bies, D., Klee, H. J. & Yanofsky, M. F. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol. J. 4, 45–51 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, B. et al. MiR319-regulated TCP3 modulates silique development associated with seed shattering in Brassicaceae. Cells 11(19), 3096. https://doi.org/10.3390/cells11193096 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labana, K. S., Banga, S. S. & Banga, S. K. Breeding oilseed Brassicas. In Breeding Oilseed Brassicas (eds Labana, K. S. et al.) 21–43 (Springer, 1992).


    Google Scholar
     

  • Parker, T. A., Lo, S. & Gepts, P. Pod shattering in grain legumes: emerging genetic and environment-related patterns. Plant Cell 33, 179–199 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, S. et al. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 8, 6261 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Y. et al. Effects of nitrogen application and planting density interaction on the Silique-Shattering resistance and yield of direct-seeding rapeseed (Brassica napus L.) in Sichuan. Agronomy 14(7), 1437. https://doi.org/10.3390/agronomy14071437 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Akhatar, J. et al. Genome wide association analyses to identify genetic factors associated with flowering and plant height in Brassica juncea (L.) Czern & Coss. Sci. Rep. 11, 1–14 (2021).

    Article 

    Google Scholar
     

  • Singh, M. et al. Influence of seed size on germination and early seedling growth in Indian mustard (Brassica juncea L.). IJPGR 25, 257–260 (2012).


    Google Scholar
     

  • Mahmood, T., Rahman, M. H., Stringam, G. R., Yeh, F. & Good, A. G. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor. Appl. Genet. 113, 1211–1220. https://doi.org/10.1007/s00122-006-0376-1 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, P. et al. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 125(2), 285–296. https://doi.org/10.1007/s00122-012-1833-7 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, Y. et al. Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci. Rep. 5, 14407 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Q. et al. Identification and validation of major QTLs associated with low seed coat deficiency of natto soybean seeds (Glycine max L.). Theor. Appl. Genet. 133, 3165–3176. https://doi.org/10.1007/s00122-020-03662-5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H. et al. QTL identification for nine seed-related traits in Brassica juncea using a multiparent advanced generation intercross (MAGIC) population. Czech J. Genet. Plant Breed. 57, 9–18 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol. 16, 71. https://doi.org/10.1186/s12870-016-0759-7 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Shen, Y., Li, S., Ge, X. & Li, Z. High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front. Plant Sci. 8, 1512. https://doi.org/10.3389/fpls.2017.01512 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, S. et al. Genetic analyses of nitrogen assimilation enzymes in Brassica juncea (L.) Czern & Coss. Mol. Biol. Rep. 46, 4235–4244. https://doi.org/10.1007/s11033-019-04878-5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vidal, E. A., Moyano, T. C., Canales, J. & Gutiérrez, R. A. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. J. Exp. Bot. 65, 5611–5618 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Role of protein Phosphatase1 regulatory subunit3 in mediating the abscisic acid response. Plant Physiol. 184, 1317–1332 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An, H. et al. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615–3626 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra, B. S., Jamsheer, K. M., Singh, D., Sharma, M. & Laxmi, A. Genome-wide identification and expression, protein–protein interaction and evolutionary analysis of the seed plant-specific BIG GRAIN and BIG GRAIN LIKE gene family. Front. Plant Sci. 8, 1812. https://doi.org/10.3389/fpls.2017.01812 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, T. et al. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25(9), 3347–3359. https://doi.org/10.1105/tpc.113.115063 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, L. et al. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. Plant Cell 26, 665–677 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. F. et al. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell 21(1), 72–89. https://doi.org/10.1105/tpc.108.063503 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. Q., Ullah, H., Jones, A. M. & Assmann, S. M. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292(5524), 2070–2072. https://doi.org/10.1126/science.1059046 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kühn, C. & Grof, C. P. Sucrose transporters of higher plants. Curr. Opin. Plant Biol. 13(3), 288–298. https://doi.org/10.1016/j.pbi.2010.02.001 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. Q. et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207–211. https://doi.org/10.1126/science.1213351 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, D. et al. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots. Front. Plant. Sci. 5, 615 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladwig, F. et al. Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. Plant Physiol. 158, 1643–1655 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lionneton, E., Aubert, G., Ochatt, S. & Merah, O. Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor. Appl. Genet. 109, 792–799. https://doi.org/10.1007/s00122-004-1682-0 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, G. et al. Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann. Bot. 109(4), 747–759. https://doi.org/10.1093/aob/mcr323 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadava, S. K. et al. QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines. Theor. Appl. Genet. 125, 1553–1564. https://doi.org/10.1007/s00122-012-1934-3 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagheri, H. et al. Identification of seed-related QTL in Brassica rapa. Span. J. Agric. Res. 11(4), 1085–1093 (2013).

    Article 

    Google Scholar
     

  • Liljegren, S. J. et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer, E. M., Jaramillo, M. A. & Di Stilio, V. S. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166, 1011–1023 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorefan, K. et al. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459, 583–586 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaradat, M. R., Ruegger, M., Bowling, A., Butler, H. & Cutler, A. J. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons. GM Crops Food 5, 302–320. https://doi.org/10.4161/21645698.2014.947827 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, N. et al. Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L. Plant Mol. Biol. 105(1–2), 161–175 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, X. Y., Macmillan, R. H., Burrow, R. P., Kadkol, G. P. & Halloran, G. M. Pendulum test for evaluation of the rupture strength of seed pods. J. Text. Stud. 25, 179–189 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Kadkol, G. P. Brassica shatter-resistance research update. In Proceedings of the 16th Australian Research Assembly on Brassicas Conference, Ballarat Victoria, 14–16 September 2009, 104–109 (2009).

  • Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhatar, J. et al. Association mapping of seed quality traits under varying conditions of nitrogen application in Brassica juncea L. Czern & Coss. Front. Genet. 11, 744. https://doi.org/10.3389/fgene.2020.00744 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipka, A. E. et al. GAPIT: Genome association and prediction integrated tool. Bioinformatics 28, 2397–2399 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. https://doi.org/10.1093/nar/gkn176 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25. https://doi.org/10.1186/gb-2010-11-3-r25 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar