Bañuelos, G. S., Dhillon, K. S. & Banga, S. S. Oilseed Brassicas. In Biofuel Crops: Production, Physiology and Genetics (ed. Singh, B. P.) 339–368 (CABI, 2013).
Bassegio, D. & Zanotto, M. D. Growth, yield, and oil content of Brassica species under Brazilian tropical conditions. Bragantia 79, 203–212 (2020).
Hossain, Z. et al. Establishment, yield and yield components of Brassicaceae oilseeds as potential biofuel feedstock. Ind. Crops Prod. 141, 111800 (2019).
Banga, S. K., Kumar, P., Bhajan, R., Singh, D. & Banga, S. S. Genetics and breeding. In Brassica Oilseeds: Breeding and Management (eds Kumar, A. et al.) 11–41 (CABI, 2015).
Basunanda, P. et al. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 120, 271. https://doi.org/10.1007/s00122-009-1133-z (2010).
Shi, J. Q. et al. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci. Rep. 5, 14481 (2015).
Sadras, V. O. Evolutionary aspects of the trade-off between seed size and number 437 in crops. Field Crops Res. 100, 125–138 (2007).
Kaur, J. et al. Genome wide association mapping and candidate gene analysis for pod shatter resistance in Brassica juncea and its progenitor species. Mol. Biol. Rep. 47, 2963–2974. https://doi.org/10.1007/s11033-020-05384-9 (2020).
Martin, A. R. Crops and the seed mass–seed output trade-off in plants. Int. J. Plant Sci. 182, 84–90 (2021).
Pechan, P. M. & Morgan, D. G. The use of radiography in studies of plant development in vivo. Planta 159, 476–481 (1983).
Clarke, J. M. & Simpson, G. M. Influence of irrigation and seeding rates on yield and yield components of Brassica napus cv. Tower. Can. J. Plant Sci. 58, 731–737 (1978).
Priyamedha, Singh, V. V., Chauhan, J. S., Meena, M. L. & Mishra, D. C. Correlation and path coefficient analysis for yield and yield components in early generation lines of Indian mustard (Brassica juncea L.). Curr. Adv. Agri. Sci. 5, 37–40 (2013).
Kuai, J. et al. Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Res. 180, 10–20 (2015).
Khan, N. et al. Genome – wide identification, classification, and expression pattern of homeobox gene family in Brassica rapa under various stresses. Sci. Rep. 8, 16265. https://doi.org/10.1038/s41598-018-34448-x (2018).
Pechan, P. M. & Keller, W. A. Identification of potentially embryogenic microspores in Brassica napus. Physiol. Plant. 74, 377–384 (1988).
Diepenbrock, W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Res. 67, 35–49 (2000).
Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).
Wang, L. & Ruan, Y. L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol. 160, 777–787 (2012).
Gegas, V. C. et al. A genetic framework for grain size and shape variation in wheat. Plant Cell 22, 1046–1056 (2010).
Kesavan, M., Song, J. T. & Seo, H. S. Seed size: A priority trait in cereal crops. Physiol. Plant. 147, 113–120 (2013).
Zhang, X., Sun, J., Cao, X. & Song, X. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol. 169, 2118–2128 (2015).
Allorent, G. et al. Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana. New Phytol. 205, 707–719 (2015).
Ghildiyal, M. Contribution of leaf and pod photosynthesis to seed yield in mustard. Photosynthetica 26, 91–94 (1992).
Hu, Z., Huang, S., Sun, M., Wang, H. & Hua, W. Development and application of single nucleotide polymorphism markers in the polyploidy Brassica napus by 454 sequencing of expressed sequence tags. Plant Breed. 131, 293–299 (2012).
Iqbal, S., Khan, H. Z. & Shaheen, H. Growth and yield responses of mungbean to different levels of phosphorous application under different tillage systems. Int. J. Agri. Appl. Sci. 4, 22–27 (2012).
Wang, H., Hou, L., Wang, M. & Mao, P. Contribution of the pod wall to seed grain filling in alfalfa. Sci. Rep. 6, 26586. https://doi.org/10.1038/srep26586 (2016).
Singal, H. R., Talwar, G., Dua, A. & Singh, R. Pod photosynthesis and seed dark CO2 fixation support oil synthesis in developing Brassica seeds. J. Biosci. 20, 49–58 (1995).
Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848. https://doi.org/10.1038/nature07895 (2009).
Harlan, J. R. Crops and Man 2nd edn. (American Society of Agronomy and Crop Science Society of America, 1992).
Li, C., Zhou, A. & Sang, T. Rice domestication by reducing shattering. Science 311(5769), 1936–1939. https://doi.org/10.1126/science.1123604 (2006).
Sang, T. & Ge, S. Genetics and phylogenetics of rice domestication. Curr. Opin. Genet. Dev. 17, 533–538 (2007).
Patel, M. K. et al. Genome-wide association study uncovers key genomic regions governing agro-morphological and quality traits in Indian mustard [Brassica juncea (L.) Czern. and Coss.]. PLoS ONE 20(4), e0322120. https://doi.org/10.1371/journal.pone.0322120 (2025).
Raman, R. et al. Identification and validation of genomic regions for pod shatter resistance in Brassica rapa using QTL-seq and traditional QTL mapping. BMC Plant Biol. 25, 175. https://doi.org/10.1186/s12870-025-06155-z (2025).
Daware, A. V. et al. Regional association analysis of MetaQTLs delineates candidate grain size genes in rice. Front Plant Sci. 8, 260976. https://doi.org/10.3389/fpls.2017.00807 (2017).
Sugimoto-Shirasu, K. & Roberts, K. “Big it up”: Endoreduplication and cell-size control in plants. Curr. Opin. Plant Biol. 6, 544–553 (2003).
Zhang, B., Li, C., Li, Y. & Yu, H. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nat. Plants 6, 1146–1157 (2020).
Garcia, D., Gerald, J. N. F. & Berger, F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17, 52–60 (2005).
Schruff, M. C. et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133, 251–261 (2006).
Adamski, N. M., Anastasiou, E., Eriksson, S., O’Neill, C. M. & Lenhard, M. Local maternal control of seed size by KLUH/ CYP78A5 – dependent growth signaling. PNAS 106, 20115–20120 (2009).
Fang, W., Wang, Z., Cui, R., Li, J. & Li, Y. Maternal control of seed size by EOD3/ CYP78A6 in Arabidopsis thaliana. Plant J. 70, 929–939 (2012).
Ohto, M. A., Floyd, S. K., Fischer, R. L., Goldberg, R. B. & Harada, J. J. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex. Plant Reprod. 22, 277–289 (2009).
Wagstaff, C., Yang, T. J., Stead, A. D., Buchanan-Wollaston, V. & Roberts, J. A. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J. 57, 690–705 (2009).
Li, P. et al. Identification and characterization of the first cytokinin glycosyltransferase from rice. Rice 12, 19 (2019).
Xiao, W. et al. Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol. 142, 1160–1168 (2006).
Li, J., Nie, X., Tan, J. L. & Berger, F. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. PNAS 110, 15479–15484 (2013).
Ferrándiz, C., Liljegren, S. J. & Yanofsky, M. F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289, 436–438 (2000).
Liljegren, S. J. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770. https://doi.org/10.1038/35008089 (2000).
Rajani, S. & Sundaresan, V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr. Biol. 11, 1914–1922 (2001).
Østergaard, L., Kempin, S. A., Bies, D., Klee, H. J. & Yanofsky, M. F. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol. J. 4, 45–51 (2006).
Cao, B. et al. MiR319-regulated TCP3 modulates silique development associated with seed shattering in Brassicaceae. Cells 11(19), 3096. https://doi.org/10.3390/cells11193096 (2022).
Labana, K. S., Banga, S. S. & Banga, S. K. Breeding oilseed Brassicas. In Breeding Oilseed Brassicas (eds Labana, K. S. et al.) 21–43 (Springer, 1992).
Parker, T. A., Lo, S. & Gepts, P. Pod shattering in grain legumes: emerging genetic and environment-related patterns. Plant Cell 33, 179–199 (2021).
Lo, S. et al. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 8, 6261 (2018).
Luo, Y. et al. Effects of nitrogen application and planting density interaction on the Silique-Shattering resistance and yield of direct-seeding rapeseed (Brassica napus L.) in Sichuan. Agronomy 14(7), 1437. https://doi.org/10.3390/agronomy14071437 (2024).
Akhatar, J. et al. Genome wide association analyses to identify genetic factors associated with flowering and plant height in Brassica juncea (L.) Czern & Coss. Sci. Rep. 11, 1–14 (2021).
Singh, M. et al. Influence of seed size on germination and early seedling growth in Indian mustard (Brassica juncea L.). IJPGR 25, 257–260 (2012).
Mahmood, T., Rahman, M. H., Stringam, G. R., Yeh, F. & Good, A. G. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor. Appl. Genet. 113, 1211–1220. https://doi.org/10.1007/s00122-006-0376-1 (2006).
Yang, P. et al. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 125(2), 285–296. https://doi.org/10.1007/s00122-012-1833-7 (2012).
Fu, Y. et al. Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci. Rep. 5, 14407 (2015).
Zhu, Q. et al. Identification and validation of major QTLs associated with low seed coat deficiency of natto soybean seeds (Glycine max L.). Theor. Appl. Genet. 133, 3165–3176. https://doi.org/10.1007/s00122-020-03662-5 (2020).
Zhao, H. et al. QTL identification for nine seed-related traits in Brassica juncea using a multiparent advanced generation intercross (MAGIC) population. Czech J. Genet. Plant Breed. 57, 9–18 (2021).
Wang, X. et al. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol. 16, 71. https://doi.org/10.1186/s12870-016-0759-7 (2016).
Yang, Y., Shen, Y., Li, S., Ge, X. & Li, Z. High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front. Plant Sci. 8, 1512. https://doi.org/10.3389/fpls.2017.01512 (2017).
Gupta, S. et al. Genetic analyses of nitrogen assimilation enzymes in Brassica juncea (L.) Czern & Coss. Mol. Biol. Rep. 46, 4235–4244. https://doi.org/10.1007/s11033-019-04878-5 (2019).
Vidal, E. A., Moyano, T. C., Canales, J. & Gutiérrez, R. A. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. J. Exp. Bot. 65, 5611–5618 (2014).
Zhang, J. et al. Role of protein Phosphatase1 regulatory subunit3 in mediating the abscisic acid response. Plant Physiol. 184, 1317–1332 (2020).
An, H. et al. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615–3626 (2004).
Mishra, B. S., Jamsheer, K. M., Singh, D., Sharma, M. & Laxmi, A. Genome-wide identification and expression, protein–protein interaction and evolutionary analysis of the seed plant-specific BIG GRAIN and BIG GRAIN LIKE gene family. Front. Plant Sci. 8, 1812. https://doi.org/10.3389/fpls.2017.01812 (2017).
Xia, T. et al. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25(9), 3347–3359. https://doi.org/10.1105/tpc.113.115063 (2013).
Du, L. et al. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. Plant Cell 26, 665–677 (2014).
Li, S. F. et al. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell 21(1), 72–89. https://doi.org/10.1105/tpc.108.063503 (2009).
Wang, X. Q., Ullah, H., Jones, A. M. & Assmann, S. M. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292(5524), 2070–2072. https://doi.org/10.1126/science.1059046 (2001).
Kühn, C. & Grof, C. P. Sucrose transporters of higher plants. Curr. Opin. Plant Biol. 13(3), 288–298. https://doi.org/10.1016/j.pbi.2010.02.001 (2010).
Chen, L. Q. et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207–211. https://doi.org/10.1126/science.1213351 (2012).
Peng, D. et al. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots. Front. Plant. Sci. 5, 615 (2014).
Ladwig, F. et al. Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. Plant Physiol. 158, 1643–1655 (2012).
Lionneton, E., Aubert, G., Ochatt, S. & Merah, O. Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor. Appl. Genet. 109, 792–799. https://doi.org/10.1007/s00122-004-1682-0 (2004).
Ding, G. et al. Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann. Bot. 109(4), 747–759. https://doi.org/10.1093/aob/mcr323 (2012).
Yadava, S. K. et al. QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines. Theor. Appl. Genet. 125, 1553–1564. https://doi.org/10.1007/s00122-012-1934-3 (2012).
Bagheri, H. et al. Identification of seed-related QTL in Brassica rapa. Span. J. Agric. Res. 11(4), 1085–1093 (2013).
Liljegren, S. J. et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853 (2004).
Kramer, E. M., Jaramillo, M. A. & Di Stilio, V. S. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166, 1011–1023 (2004).
Sorefan, K. et al. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459, 583–586 (2009).
Jaradat, M. R., Ruegger, M., Bowling, A., Butler, H. & Cutler, A. J. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons. GM Crops Food 5, 302–320. https://doi.org/10.4161/21645698.2014.947827 (2014).
Gupta, N. et al. Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L. Plant Mol. Biol. 105(1–2), 161–175 (2021).
Liu, X. Y., Macmillan, R. H., Burrow, R. P., Kadkol, G. P. & Halloran, G. M. Pendulum test for evaluation of the rupture strength of seed pods. J. Text. Stud. 25, 179–189 (1994).
Kadkol, G. P. Brassica shatter-resistance research update. In Proceedings of the 16th Australian Research Assembly on Brassicas Conference, Ballarat Victoria, 14–16 September 2009, 104–109 (2009).
Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).
Akhatar, J. et al. Association mapping of seed quality traits under varying conditions of nitrogen application in Brassica juncea L. Czern & Coss. Front. Genet. 11, 744. https://doi.org/10.3389/fgene.2020.00744 (2020).
Lipka, A. E. et al. GAPIT: Genome association and prediction integrated tool. Bioinformatics 28, 2397–2399 (2012).
Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. https://doi.org/10.1093/nar/gkn176 (2008).
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25. https://doi.org/10.1186/gb-2010-11-3-r25 (2010).