• Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Pershan, P. S. Magneto-optical effects. J. Appl. Phys. 38, 1482–1490 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys.: Condens. Matter 20, 434203 (2008).

    ADS 

    Google Scholar
     

  • Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity, and multiferroicity. NPJ Quantum Mater. 3, 19 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article 

    Google Scholar
     

  • Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article 

    Google Scholar
     

  • Van Aken, B. B., Rivera, J. P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry guide to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

    Article 

    Google Scholar
     

  • Hayashida, T. et al. Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal. Nat. Commun. 11, 4582 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Du, K. et al. Kibble–Zurek mechanism of Ising domains. Nat. Phys. 19, 1495–1501 (2023).

    Article 

    Google Scholar
     

  • Fang, X. et al. Ferrorotational selectivity in ilmenites. J. Am. Chem. Soc. 145, 28022–28029 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Schmid, H. On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 252, 41–50 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Schmid, H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys.: Condens. Matter 20, 434201 (2008).

    ADS 

    Google Scholar
     

  • Cheong, S.-W., Lim, S., Du, K. & Huang, F.-T. Permutable SOS (symmetry operational similarity). NPJ Quantum Mater. 6, 58 (2021).

  • Lewińska, S. et al. Magnetic susceptibility and phase transitions in LiNiPO4. Phys. Rev. B 99, 214440 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Inda, A. & Hayami, S. Nonlinear transverse magnetic susceptibility under electric toroidal dipole ordering. J. Phys. Soc. Jpn 92, 043701 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shirane, G., Pickart, S. J., Nathans, R. & Ishikawa, Y. Neutron-diffraction study of antiferromagnetic FeTi03 and its solid solutions with α-Fe2O3. J. Phys. Chem. Solids 10, 35–43 (1959).

    Article 
    ADS 

    Google Scholar
     

  • Lawson, C. A., Nord, G. L., Dowty, E. & Hargraves, R. B. Antiphase domains and reverse thermoremanent magnetism in ilmenite-hematite minerals. Science 213, 1372–1374 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Burton, B. P., Robinson, P., McEnroe, S. A., Fabian, K. & Ballar, T. B. A low-temperature phase diagram for ilmenite-rich compositions in the system Fe2O3-FeTiO3. Am. Mineral. 93, 1260–1272 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

    Article 

    Google Scholar
     

  • Guo, X. et al. Ferrorotational domain walls revealed by electric quadrupole second harmonic generation microscopy. Phys. Rev. B 107, L180102 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yokota, H., Hayashida, T., Kitahara, D. & Kimura, T. Three-dimensional imaging of ferroaxial domains using circularly polarized second harmonic generation microscopy. NPJ Quantum Mater. 7, 106 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hayashida, T. et al. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 5, 124409 (2021).

    Article 

    Google Scholar
     

  • Liu, G. et al. Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals. Nat. Nanotechnol. 18, 854–860 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Du, K. et al. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc. Natl Acad. Sci. USA 118, e2023337118 (2021).

    Article 

    Google Scholar
     

  • Liou, S. H. & Yao, Y. D. Development of high coercivity magnetic force microscopy tips. J. Magn. Magn. Mater. 190, 130–134 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Gorlach, A. et al. High-harmonic generation driven by quantum light. Nat. Phys. 19, 1689–1696 (2023).

    Article 

    Google Scholar
     

  • Holleis, L. et al. Anomalous and anisotropic nonlinear susceptibility in the proximate Kitaev magnet α-RuCl3. NPJ Quantum Mater. 6, 66 (2021).

  • Shivaram, B. S., Dorsey, B., Hinks, D. G. & Kumar, P. Metamagnetism and the fifth-order susceptibility in UPt3. Phys. Rev. B 89, 161108 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Charilaou, M., Sheptyakov, D., Löffler, J. F. & Gehring, A. U. Large spontaneous magnetostriction in FeTiO3 and adjustable magnetic configuration in Fe(III)-doped FeTiO3. Phys. Rev. B 86, 024439 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ishikawa, Y. Electrical properties of FeTiO3-Fe2O3 solid solution series. J. Phys. Soc. Jpn 13, 37–42 (1958).

    Article 
    ADS 

    Google Scholar
     

  • Hayami, S., Oiwa, R. & Kusunose, H. Unconventional Hall effect and magnetoresistance induced by metallic ferroaxial ordering. Phys. Rev. B 108, 085124 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Li, C., Freeman, A. J., Jansen, H. J. F. & Fu, C. L. Magnetic anisotropy in low-dimensional ferromagnetic systems: Fe monolayers on Ag(001), Au(001), and Pd(001) substrates. Phys. Rev. B 42, 5433–5442 (1990).

  • Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys.: Condens. Matter 9, 767 (1997).

    ADS 

    Google Scholar
     

  • Raghavender, A. T. et al. Nano-ilmenite FeTiO3: synthesis and characterization. J. Magn. Magn. Mater. 331, 129–132 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys.: Condens. Matter 32, 165902 (2020).

    ADS 

    Google Scholar
     

  • Freimuth, F., Mokrousov, Y., Wortmann, D., Heinze, S. & Blügel, S. Maximally localized Wannier functions within the FLAPW formalism. Phys. Rev. B 78, 035120 (2008).

    Article 
    ADS 

    Google Scholar