• Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article 

    Google Scholar
     

  • Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy effective mass and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article 

    Google Scholar
     

  • Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

    Article 

    Google Scholar
     

  • Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article 

    Google Scholar
     

  • Chen, L. et al. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9, 8368–8375 (2015).

    Article 

    Google Scholar
     

  • Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article 

    Google Scholar
     

  • Wang, J. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022).

    Article 

    Google Scholar
     

  • Fu, J.-H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

    Article 

    Google Scholar
     

  • Zhu, H. et al. Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. 18, 1295–1302 (2023).

    Article 

    Google Scholar
     

  • Zheng, P. et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 14, 592 (2023).

    Article 

    Google Scholar
     

  • Li, L. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 15, 1825 (2024).

    Article 

    Google Scholar
     

  • Liu, C. et al. Understanding epitaxial growth of two-dimensional materials and their homostructures. Nat. Nanotechnol. 19, 907–918 (2024).

    Article 

    Google Scholar
     

  • Hickey, D. R. et al. Illuminating invisible grain boundaries in coalesced single-orientation WS2 monolayer films. Nano Lett. 21, 6487–6495 (2021).

    Article 

    Google Scholar
     

  • Chubarov, M. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    Article 

    Google Scholar
     

  • Seo, S.-Y. et al. Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 4, 38–44 (2021).

    Article 

    Google Scholar
     

  • Seo, S.-Y. et al. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 1, 512–517 (2018).

    Article 

    Google Scholar
     

  • Seo, S.-Y. et al. Identification of point defects in atomically thin transition-metal dichalcogenide semiconductors as active dopants. Nano Lett. 21, 3341–3354 (2021).

    Article 

    Google Scholar
     

  • Ahn, H. et al. Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotech. 19, 955–961 (2024).

    Article 

    Google Scholar
     

  • Deng, B. et al. Epitaxially defined Luttinger liquids on MoS2 bicrystals. Phys. Rev. Lett. 134, 046301 (2025).

    Article 

    Google Scholar
     

  • Jin, G. et al. Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth. Sci. Adv. 5, eaaw3180 (2019).

    Article 

    Google Scholar
     

  • Heo, H. et al. Frank–van der Merwe growth versus Volmer–Weber growth in successive stacking of a few‐layer Bi2Te3/Sb2Te3 by van der Waals heteroepitaxy: the critical roles of finite lattice‐mismatch with seed substrates. Adv. Electron. Mater. 3, https://doi.org/10.1002/aelm.201600375 (2017).

  • Jin, G. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16, 1092–1098 (2021).

    Article 

    Google Scholar
     

  • Kyuno, K. & Ehrlich, G. Step-edge barriers on Pt(111): an atomistic view. Phys. Rev. Lett. 81, 5592–5595 (1998).

    Article 

    Google Scholar
     

  • Choi, M.-Y. et al. Thermodynamically driven tilt grain boundaries of monolayer crystals using catalytic liquid alloys. Nano Lett. 23, 4516–4523 (2023).

    Article 

    Google Scholar
     

  • Brewer, L. & Lamoreaux, R. H. The Mo-S system (Molybdenum-Sulfur). Bull. Alloy Phase Diagr. 1, 93–95 (1980).

    Article 

    Google Scholar
     

  • Hoang, A. T. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023).

    Article 

    Google Scholar
     

  • Fu, D. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017).

    Article 

    Google Scholar
     

  • Zhang, Z. & Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).

    Article 

    Google Scholar
     

  • Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    Article 

    Google Scholar
     

  • Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

    Article 

    Google Scholar
     

  • Lim, Y.-F. et al. Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier ACS nano. ACS Nano 12, 1339–1349 (2018).

    Article 

    Google Scholar
     

  • Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article 

    Google Scholar
     

  • Jain, A. et al. One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19, 6914–6923 (2019).

    Article 

    Google Scholar
     

  • Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).


    Google Scholar
     

  • Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).

  • Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n -type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article 

    Google Scholar
     

  • Stern, F. & Howard, W. E. Properties of semiconductor surface inversion layers in the electric quantum limit physical review. Phys. Rev. 163, 816–835 (1967).

    Article 

    Google Scholar
     

  • Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article 

    Google Scholar
     

  • Sarma, S. D., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article 

    Google Scholar
     

  • Schmidt, S. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14, 1909–1913 (2014).

    Article 

    Google Scholar
     

  • Hikami, S., Larkin, A. I. & Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63, 707–710 (1980).

    Article 

    Google Scholar
     

  • Schmidt, H. et al. Quantum transport and observation of Dyakonov–Perel spin-orbit scattering in monolayer MoS2. Phy. Rev. Lett. 116, 046803 (2016).

    Article 

    Google Scholar
     

  • Papadopoulos, N., Watanabe, K., Taniguchi, T., van der Zant, H. S. J. & Steele, G. A. Weak localization in boron nitride encapsulated bilayer MoS2. Phys. Rev. B 99, 115414 (2019).

    Article 

    Google Scholar
     

  • Qu, T. et al. Observation of weak localization in dual-gated bilayer MoS2. Phys. Rev. Res. 6, 013216 (2024).

    Article 

    Google Scholar
     

  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 

    Google Scholar
     

  • Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

    Article 

    Google Scholar
     

  • Park, J. H. et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 3, e1701661 (2017).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. Electrical spectroscopy of defect states and their hybridization in monolayer MoS2. Nat. Commun. 14, 44 (2023).

    Article 

    Google Scholar
     

  • Wang, Y., Sarkar, S., Yan, H. & Chhowalla, M. Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides. Nat. Electron. 7, 638–645 (2024).

    Article 

    Google Scholar