• Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    Article 

    Google Scholar
     

  • Hu, J., Wu, C. & Dai, X. Proposed design of a Josephson diode. Phys. Rev. Lett. 99, 067004 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, K. & Hu, J. Superconducting diode effects. Nat. Phys. 18, 1145–1146 (2022).

    Article 

    Google Scholar
     

  • Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558–577 (2023).

    Article 

    Google Scholar
     

  • Pal, B. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 18, 1228–1233 (2022).

    Article 

    Google Scholar
     

  • Le, T. et al. Superconducting diode effect and interference patterns in kagome CsV3Sb5. Nature 630, 64–69 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Holmes, D. S., Ripple, A. L. & Manheimer, M. A. Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23, 1701610 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Soloviev, I. I. et al. Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017).

    Article 

    Google Scholar
     

  • Semenov, V. K., Polyakov, Y. A. & Tolpygo, S. K. Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 29, 1–9 (2019).


    Google Scholar
     

  • Seoane, R. S. et al. Josephson diode effect in supercurrent interferometers. Phys. Rev. Lett. 129, 267702 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zazunov, A. et al. Approaching ideal rectification in superconducting diodes through multiple Andreev reflections. Preprint at https://arxiv.org/abs/2307.14698 (2023).

  • Bozkurt, A. M. et al. Double-Fourier engineering of Josephson energy-phase relationships applied to diodes. SciPost Phys. 15, 204 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Seoane, R. S. et al. Tuning the Josephson diode response with an ac current. Phys. Rev. Res. 6, L022002 (2024).

    Article 

    Google Scholar
     

  • Valentini, M. et al. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nat. Commun. 15, 169 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Chiles, J. et al. Nonreciprocal supercurrents in a field-free graphene Josephson triode. Nano Lett. 23, 5257–5263 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Daido, A. et al. Unidirectional superconductivity and superconducting diode effect induced by dissipation. Phys. Rev. B 111, L020508 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Prominent Josephson tunneling between twisted single copper oxide planes of Bi2Sr2-xLaxCuO6+y. Nat. Commun. 14, 5201 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Y. et al. Persistent Josephson tunneling between Bi2Sr2CaCu2O8+x flakes twisted by 45°across the superconducting dome. Phys. Rev. B 108, 174508 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Y. et al. Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCu2O8+x flakes. Phys. Rev. X 11, 031011 (2021).


    Google Scholar
     

  • Ghosh, S. et al. High-temperature Josephson diode. Nat. Mater. 23, 612–618 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Nagaosa, N. et al. Concept of quantum geometry in optoelectronic processes in solids: application to solar cells. Adv. Mater. 29, 1603345 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Carapella, G., Granata, V., Russo, F. & Costabile, G. Bistable Abrikosov vortex diode made of a Py–Nb ferromagnet-superconductor bilayer structure. Appl. Phys. Lett. 94, 242504 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hooper, J. et al. Anomalous Josephson network in the Ru-Sr2RuO4 eutectic system. Phys. Rev. B 70, 014510 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Díez-Mérida, J. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 14, 2396 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lyu, Y.-Y. et al. Superconducting diode effect via conformal-mapped nanoholes. Nat. Commun. 12, 2703 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bauriedl, L. et al. Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 13, 4266 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jeon, K.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 21, 1008–1013 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

    Article 

    Google Scholar
     

  • Narita, H. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 17, 823–828 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Turini, B. et al. Josephson diode effect in high-mobility InSb nanoflags. Nano Lett. 22, 8502–8508 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Portolés, E. et al. A tunable monolithic SQUID in twisted bilayer graphene. Nat. Nanotechnol. 17, 1159–1164 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hou, Y. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 131, 027001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kealhofer, R., Jeong, H., Rashidi, A., Balents, L. & Stemmer, S. Anomalous superconducting diode effect in a polar superconductor. Phys. Rev. B 107, L100504 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Matsui, H. et al. Nonreciprocal critical current in an obliquely ion-irradiated YBa2Cu3O7 film. Appl. Phys. Lett. 122, 172601 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yun, J. et al. Magnetic proximity-induced superconducting diode effect and infinite magnetoresistance in a van der Waals heterostructure. Phys. Rev. Res. 5, L022064 (2023).

    Article 

    Google Scholar
     

  • Liu, F. et al. Superconducting diode effect under time-reversal symmetry. Sci. Adv. 10, eado1502 (2024).

    Article 

    Google Scholar
     

  • Chen, P. et al. Edelstein effect induced superconducting diode effect in inversion symmetry breaking MoTe2 Josephson junctions. Adv. Funct. Mater. 34, 2311229 (2024).

    Article 

    Google Scholar
     

  • Kim, J.-K. et al. Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier. Nat. Commun. 15, 1120 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Li, C. et al. Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking. Nano Lett. 24, 4108–4116 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, S. Y. F. et al. Time-reversal symmetry breaking superconductivity between twisted cuprate superconductors. Science 382, 1422–1427 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. C. et al. Correlating the charge-transfer gap to the maximum transition temperature in Bi2Sr2Can−1CunO2n+4+δ. Science 381, 227–231 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Can, O. et al. High-temperature topological superconductivity in twisted double-layer copper oxides. Nat. Phys. 17, 519–524 (2021).

    Article 

    Google Scholar
     

  • Volkov, P. A. et al. Josephson diode effects in twisted nodal superconductors. Phys. Rev. B 109, 094518 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Nideröst, M. et al. Lower critical field Hc1 and barriers for vortex entry in Bi2Sr2CaCu2O8+δ crystals. Phys. Rev. Lett. 81, 3231–3234 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Clem, J. R., Coffey, M. W. & Hao, Z. Lower critical field of a Josephson-coupled layer model of high-Tc superconductors. Phys. Rev. B 44, 2732–2738 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, A. C. et al. Inhomogeneity-induced time-reversal symmetry breaking in cuprate twist junctions. Phys. Rev. B 108, L100505 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gu, G. D. et al. Large single crystal Bi-2212 along the c-axis prepared by floating zone method. J. Cryst. Growth 130, 325–329 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J. et al. Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2−xPbx)Sr2CaCu2O8+δ superconductors. Chin. Phys. B 28, 077403 (2019).

    Article 
    ADS 

    Google Scholar