Lieb, E. H. & Wu, F. Y. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445–1448 (1968).
Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).
Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).
Huang, E. W., Mendl, C. B., Jiang, H.-C., Moritz, B. & Devereaux, T. P. Stripe order from the perspective of the Hubbard model. npj Quantum Mater. 3, 22 (2018).
Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).
Qin, M., Shi, H. & Zhang, S. Benchmark study of the two-dimensional Hubbard model with auxiliary-field quantum Monte Carlo method. Phys. Rev. B 94, 085103 (2016).
LeBlanc, J. P. F. et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).
Jiang, H.-C. & Kivelson, S. A. Stripe order enhanced superconductivity in the Hubbard model. Proc. Natl Acad. Sci. USA 119, e2109406119 (2022).
Xu, W., Haule, K. & Kotliar, G. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective. Phys. Rev. Lett. 111, 036401 (2013).
Deng, X. et al. How bad metals turn good: spectroscopic signatures of resilient quasiparticles. Phys. Rev. Lett. 110, 086401 (2013).
Park, H., Haule, K. & Kotliar, G. Cluster dynamical mean field theory of the Mott transition. Phys. Rev. Lett. 101, 186403 (2008).
Kancharla, S. S. et al. Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators. Phys. Rev. B 77, 184516 (2008).
Maier, T., Jarrell, M., Pruschke, T. & Hettler, M. H. Quantum cluster theories. Rev. Mod. Phys. 77, 1027–1080 (2005).
Mai, P., Karakuzu, S., Balduzzi, G., Johnston, S. & Maier, T. A. Intertwined spin, charge, and pair correlations in the two-dimensional Hubbard model in the thermodynamic limit. Proc. Natl Acad. Sci. USA 119, e2112806119 (2022).
Mai, P. et al. Robust charge-density-wave correlations in the electron-doped single-band Hubbard model. Nat. Commun. 14, 2889 (2023).
Werner, P., Gull, E., Parcollet, O. & Millis, A. J. Momentum-selective metal-insulator transition in the two-dimensional Hubbard model: an 8-site dynamical cluster approximation study. Phys. Rev. B 80, 045120 (2009).
Rohringer, G. et al. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys. 90, 025003 (2018).
Schäfer, T., Toschi, A. & Held, K. Dynamical vertex approximation for the two-dimensional Hubbard model. J. Magn. Magn. Mater. 400, 107–111 (2016).
Schäfer, T. et al. Tracking the footprints of spin fluctuations: a multimethod, multimessenger study of the two-dimensional Hubbard model. Phys. Rev. X 11, 011058 (2021).
Rubtsov, A. N., Katsnelson, M. I. & Lichtenstein, A. I. Dual fermion approach to nonlocal correlations in the Hubbard model. Phys. Rev. B 77, 033101 (2008).
Stanescu, T. D. & Kotliar, G. Fermi arcs and hidden zeros of the green function in the pseudogap state. Phys. Rev. B 74, 125110 (2006).
Ferrero, M. et al. Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space. Phys. Rev. B 80, 064501 (2009).
Wu, W. et al. Pseudogap and Fermi-surface topology in the two-dimensional Hubbard model. Phys. Rev. X 8, 021048 (2018).
Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).
Huang, E. W., Sheppard, R., Moritz, B. & Devereaux, T. P. Strange metallicity in the doped Hubbard model. Science 366, 987–990 (2019).
Brown, P. T. et al. Bad metallic transport in a cold atom Fermi-Hubbard system. Science 363, 379–382 (2019).
Hatsugai, Y. & Kohmoto, M. Exactly solvable model of correlated lattice electrons in any dimensions. J. Phys. Soc. Jpn 61, 2056–2069 (1992).
Phillips, P. W., Yeo, L. & Huang, E. W. Exact theory for superconductivity in a doped Mott insulator. Nat. Phys. 16, 1175–1180 (2020).
Huang, E. W., Nave, G. L. & Phillips, P. W. Discrete symmetry breaking defines the Mott quartic fixed point. Nat. Phys.s 18, 511–516 (2022).
Zhao, M., Yang, W.-W. & Zhong, Y. Hatsugai-Kohmoto models: exactly solvable playground for Mottness and non-Fermi liquid. J. Phys.: Condens. Matter 37, 183005 (2025).
Skolimowski, J. Real-space analysis of Hatsugai-Kohmoto interaction. Phys. Rev. B 109, 165129 (2024).
Ma, Y. et al. Charge susceptibility and Kubo response in Hatsugai-Kohmoto-related models. Phys. Rev. B 112, 045109 (2025).
White, S. R. et al. Numerical study of the two-dimensional Hubbard model. Phys. Rev. B 40, 506–516 (1989).
Seki, K. & Yunoki, S. Brillouin-zone integration scheme for many-body density of states: tetrahedron method combined with cluster perturbation theory. Phys. Rev. B 93, 245115 (2016).
Huang, E. W., Ding, S., Liu, J. & Wang, Y. Determinantal quantum Monte Carlo solver for cluster perturbation theory. Phys. Rev. Res. 4, L042015 (2022).
Meinders, M. B. J., Eskes, H. & Sawatzky, G. A. Spectral-weight transfer: breakdown of low-energy-scale sum rules in correlated systems. Phys. Rev. B 48, 3916–3926 (1993).
Eskes, H., Meinders, M. B. J. & Sawatzky, G. A. Anomalous transfer of spectral weight in doped strongly correlated systems. Phys. Rev. Lett. 67, 1035–1038 (1991).
Duffy, D. & Moreo, A. Specific heat of the two-dimensional Hubbard model. Phys. Rev. B 55, 12918–12924 (1997).
Wang, W. O., Ding, J. K., Moritz, B., Huang, E. W. & Devereaux, T. P. Magnon heat transport in a two-dimensional Mott insulator. Phys. Rev. B 105, L161103 (2022).
Zhao, J., La Nave, G. & Phillips, P. W. Proof of a stable fixed point for strongly correlated electron matter. Phys. Rev. B 108, 165135 (2023).
Manning-Coe, D. & Bradlyn, B. Ground state stability, symmetry, and degeneracy in Mott insulators with long-range interactions. Phys. Rev. B 108, 165136 (2023).
Mai, P., Feldman, B. E. & Phillips, P. W. Topological Mott insulator at quarter filling in the interacting Haldane model. Phys. Rev. Res. 5, 013162 (2023).
Mai, P., Zhao, J., Feldman, B. E. & Phillips, P. W. 1/4 is the new 1/2 when topology is intertwined with Mottness. Nat. Commun. 14, 5999 (2023).
Jabłonowski, K., Skolimowski, J., Brzezicki, W., Byczuk, K. & Wysokiński, M. M. Topological Mott insulator in the odd-integer filled Anderson lattice model with Hatsugai-Kohmoto interactions. Phys. Rev. B 108, 195145 (2023).
Zhong, Y. Solvable periodic anderson model with infinite-range Hatsugai-Kohmoto interaction: ground-states and beyond. Phys. Rev. B 106, 155119 (2022).
Setty, C. et al. Symmetry constraints and spectral crossing in a Mott insulator with Green’s function zeros. Phys. Rev. Res. 6, L032018 (2024).
Huang, E. W. Strong-coupling mechanism of the pseudogap in small Hubbard clusters. Preprint at https://arxiv.org/abs/2010.12601 (2020).
Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).
Qin, M., Sch’´afer, T., Andergassen, S., Corboz, P. & Gull, E. The Hubbard model: a computational perspective. Annu. Rev. Condens. Matter Phys. 13, 275–302 (2022).
Schumm, G., Zhang, S. & Sandvik, A. W. Single-particle dispersion and density of states of the half-filled 2D Hubbard model. Phys. Rev. B 112, 085109 (2025).
Harris, A. B. & Lange, R. V. Single-particle excitations in narrow energy bands. Phys. Rev. 157, 295–314 (1967).
Phillips, P. Colloquium: identifying the propagating charge modes in doped Mott insulators. Rev. Mod. Phys. 82, 1719–1742 (2010).
Tenkila, G., Zhao, J. & Phillips, P. W. Dynamical spectral weight transfer in the orbital Hatsugai-Kohmoto model. Phys. Rev. B 111, 045126 (2025).
Worm, P., Reitner, M., Held, K. & Toschi, A. Fermi and Luttinger arcs: two concepts, realized on one surface. Phys. Rev. Lett. 133, 166501 (2024).
Vollhardt, D. Characteristic crossing points in specific heat curves of correlated systems. Phys. Rev. Lett. 78, 1307–1310 (1997).
Mai, P., Zhao, J., Maier, T. A., Bradlyn, B. & Phillips, P. W. Topological phase transition without single particle gap closing in strongly correlated systems. Phys. Rev. B 110, 075105 (2024).
Zhao, J., Mai, P., Bradlyn, B. & Phillips, P. Failure of topological invariants in strongly correlated matter. Phys. Rev. Lett. 131, 106601 (2023).
Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. Sec. A 62, 416 (1949).
Guerci, D., Sangiovanni, G., Millis, A. J. & Fabrizio, M. Electrical transport in the Hatsugai-Kohmoto model. Phys. Rev. B 111, 075124 (2025).
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).
White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10356 (1993).
Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45, 255 (1950).
Towns, J. et al. Xsede: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).
Mai, P. Data for Mai etal Twisting Hubbard into the Momentum-Mixing Hatsugai-Kohmoto Model. Zenodo https://doi.org/10.5281/zenodo.17096693 (2025).