• Eaton, S., Cornwell, H., Hamilton-Giachritsis, C. & Fairchild, G. Resilience and young people’s brain structure, function and connectivity: A systematic review. Neurosci. Biobehav Rev. 132, 936–956 (2022).

    PubMed 

    Google Scholar
     

  • Hillis, S., Mercy, J., Amobi, A. & Kress, H. Global prevalence of past-year violence against children: A systematic review and minimum estimates. Pediatrics 137, https://doi.org/10.1542/peds.2015-4079 (2016).

  • Kessler, R. C., Berglund, P. & Demler, O. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

    PubMed 

    Google Scholar
     

  • Fischer, A. S., Hagan, K. E. & Gotlib, I. H. Functional neuroimaging biomarkers of resilience in major depressive disorder. Curr. Opin. Psychiatry 34, 22–28 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feder, A., Fred-Torres, S., Southwick, S. M. & Charney, D. S. The biology of human resilience: Opportunities for enhancing resilience across the life span. Biol. Psychiatry 86, 443–453 (2019).

    PubMed 

    Google Scholar
     

  • Gee, D. G. Early adversity and development: Parsing heterogeneity and identifying pathways of risk and resilience. Am. J. Psychiatry 178, 998–1013 (2021).

    PubMed 

    Google Scholar
     

  • Holz, N. E., Tost, H. & Meyer-Lindenberg, A. Resilience and the brain: a key role for regulatory circuits linked to social stress and support. Mol. Psychiatry 25, 379–396 (2020).

    PubMed 

    Google Scholar
     

  • Jiang, Y. A theory of the neural mechanisms underlying negative cognitive bias in major depression. Front. Psychiatry 15, 1348474 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heitzeg, M. M., Nigg, J. T., Yau, W. Y., Zubieta, J. K. & Zucker, R. A. Affective circuitry and risk for alcoholism in late adolescence: differences in frontostriatal responses between vulnerable and resilient children of alcoholic parents. Alcohol Clin. Exp. Res. 32, 414–426 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nimarko, A. F., Garrett, A. S., Carlson, G. A. & Singh, M. K. Neural correlates of emotion processing predict resilience in youth at familial risk for mood disorders. Dev. Psychopathol. 31, 1037–1052 (2019).

    PubMed 

    Google Scholar
     

  • Rodman, A. M., Jenness, J. L., Weissman, D. G., Pine, D. S. & McLaughlin, K. A. Neurobiological markers of resilience to depression following childhood maltreatment: The role of neural circuits supporting the cognitive control of emotion. Biol. Psychiatry 86, 464–473 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiggins, J. L. et al. Neural markers in pediatric bipolar disorder and familial risk for bipolar disorder. J. Am. Acad. Child Adolesc. Psychiatry 56, 67–78 (2017).

    PubMed 

    Google Scholar
     

  • Nestler, E. J. & Russo, S. J. Neurobiological basis of stress resilience. Neuron 112, 1911–1929 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wymbs, N. F. et al. Social supports moderate the effects of child adversity on neural correlates of threat processing. Child Abuse Negl. 102, 104413 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaldewaij, R. et al. Anterior prefrontal brain activity during emotion control predicts resilience to post-traumatic stress symptoms. Nat. Hum. Behav. 5, 1055–1064 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norbury, A., Seeley, S. H., Perez-Rodriguez, M. M. & Feder, A. Functional neuroimaging of resilience to trauma: convergent evidence and challenges for future research. Psychol. Med. 53, 3293–3305 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, T. et al. Increased amygdala reactivity following early life stress: a potential resilience enhancer role. BMC Psychiatry 17, 27 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pessoa, L. Understanding emotion with brain networks. Curr. Opin. Behav. Sci. 19, 19–25 (2018).

    PubMed 

    Google Scholar
     

  • Wang, S. et al. Sex-linked neurofunctional basis of psychological resilience in late adolescence: a resting-state functional magnetic resonance imaging study. Eur. Child Adolesc. Psychiatry 29, 1075–1087 (2020).

    PubMed 

    Google Scholar
     

  • Pan, N. et al. Sex differences in the relationship between brain gray matter volume and psychological resilience in late adolescence. Eur. Child Adolesc. Psychiatry 33, 1057–1066 (2024).

    PubMed 

    Google Scholar
     

  • Cornwell, H. et al. Identifying structural brain markers of resilience to adversity in young people using voxel-based morphometry. Dev. Psychopathol. 35, 2302–2314 (2023).

    PubMed 

    Google Scholar
     

  • Dorfschmidt, L. et al. Sexually divergent development of depression-related brain networks during healthy human adolescence. Sci. Adv. 8, eabm7825 (2022).

  • Pine, D. S., Cohen, E., Cohen, P. & Brook, J. Adolescent depressive symptoms as predictors of adult depression: moodiness or mood disorder?. Am. J. Psychiatry 156, 133–135 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, S., Vaidyanathan, U., Miller, M. B., McGue, M. & Iacono, W. G. Premorbid risk factors for major depressive disorder: are they associated with early onset and recurrent course?. Dev. Psychopathol. 26, 1477–1493 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zubin, J. & Spring, B. Vulnerability: A new view of schizophrenia. J. Abnorm. Psychol. 86, 103–126 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, N. et al. Interaction of the serotonin transporter-linked polymorphic region and environmental adversity: increased amygdala-hypothalamus connectivity as a potential mechanism linking neural and endocrine hyperreactivity. Biol. Psychiatry 72, 49–56 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas-Odenthal, F. et al. Neural foundation of the diathesis-stress model: longitudinal gray matter volume changes in response to stressful life events in major depressive disorder and healthy controls. Mol. Psychiatry 29, 2724–2732 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbour, T. et al. Elevated amygdala activity in young adults with familial risk for depression: A potential marker of low resilience. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging 5, 194–202 (2020).

    PubMed 

    Google Scholar
     

  • Peyrot, W. J. et al. Effect of polygenic risk scores on depression in childhood trauma. Br. J. Psychiatry 205, 113–119 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumann, G. et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol. Psychiatry 15, 1128–1139 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Casey, B. J., et al. The adolescent brain. Ann. N. Y. Acad. Sci. 32, 43–54 (2018).

    CAS 

    Google Scholar
     

  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (Complete Samples). Biometrika 52, 591–611 (1965).

    MathSciNet 

    Google Scholar
     

  • Barch, D. M. et al. Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013).

    PubMed 

    Google Scholar
     

  • Rolls, E. T. Two what, two where, visual cortical streams in humans. Neurosci. Biobehav. Rev. 160, 105650 (2024).

    PubMed 

    Google Scholar
     

  • Birnie, M. T. & Baram, T. Z. Principles of emotional brain circuit maturation. Science 376, 1055–1056 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabenhorst, F. & Rolls, E. T. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn. Sci. 15, 56–67 (2011).

    PubMed 

    Google Scholar
     

  • Rolls, E. T., Deco, G., Huang, C. C. & Feng, J. The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action. Cereb. Cortex 33, 330–356 (2022).

    PubMed 

    Google Scholar
     

  • Rolls, E. T. The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia 128, 14–43 (2019).

    PubMed 

    Google Scholar
     

  • Rolls, E. T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct. Funct. 228, 1201–1257 (2023).

  • Rolls, E. T., Cheng, W. & Feng, J. The orbitofrontal cortex: reward, emotion and depression. Brain Commun. 2, fcaa196 (2020).

  • Peng, S., Xu, P., Jiang, Y. & Gong, G. Activation network mapping for integration of heterogeneous fMRI findings. Nat. Hum. Behav. 6, 1417–1429 (2022).

    PubMed 

    Google Scholar
     

  • Crone, E. A. & Dahl, R. E. Understanding adolescence as a period of social-affective engagement and goal flexibility. Nat. Rev. Neurosci. 13, 636–650 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Grill-Spector, K., Golarai, G. & Gabrieli, J. Developmental neuroimaging of the human ventral visual cortex. Trends Cogn. Sci. 12, 152–162 (2008).

    PubMed 

    Google Scholar
     

  • Lowe, S. R. Embracing complexity in resilience research. Nat. Ment. Health 3, 391–392 (2025).


    Google Scholar
     

  • Matosin, N., Halldorsdottir, T. & Binder, E. B. Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: The FKBP5 model. Biol. Psychiatry 83, 821–830 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Callaghan, B. L. & Tottenham, N. The stress acceleration hypothesis: Effects of early-life adversity on emotion circuits and behavior. Curr. Opin. Behav. Sci. 7, 76–81 (2016).

    PubMed 

    Google Scholar
     

  • Mary, A. et al. Resilience after trauma: The role of memory suppression. Science 367, https://doi.org/10.1126/science.aay8477 (2020).

  • Han, S. et al. Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: A randomized double-blind trial and TMS-EEG study. Cell Rep. Med. 4, 101060 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buckner, R. L. The brain’s default network: origins and implications for the study of psychosis. Dialogues Clin. Neurosci. 15, 351–358 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, T. et al. Default mode network alterations induced by childhood trauma correlate with emotional function and SLC6A4 expression. Front. Psychiatry 12, 760411 (2021).

    PubMed 

    Google Scholar
     

  • Willmore, L., Cameron, C., Yang, J., Witten, I. B. & Falkner, A. L. Behavioural and dopaminergic signatures of resilience. Nature 611, 124–132 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutter, M., Caspi, A., Fau, -, Moffitt, T. E. & Moffitt, T. E. Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies. J. Child Psychol. Psychiatry 44, 1092–1115 (2003).

    PubMed 

    Google Scholar
     

  • Malhi, G. S., Das, P., Bell, E., Mattingly, G. & Mannie, Z. Modelling resilience in adolescence and adversity: a novel framework to inform research and practice. Transl. Psychiatry 9, 316 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seney, M. L., Glausier, J. & Sibille, E. Large-scale transcriptomics studies provide insight into sex differences in depression. Biol. Psychiatry 91, 14–24 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Issler, O. et al. Sex-specific role for the long non-coding RNA LINC00473 in depression. Neuron 106, 912–926 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheinost, D. et al. Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl. Psychiatry 3, e250 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herwig, U. et al. Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. Neuroimage 184, 687–696 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Tschentscher, N. et al. The clinical impact of real-time fMRI Neurofeedback on emotion regulation: A systematic review. Brain Sci. 14, https://doi.org/10.3390/brainsci14070700 (2024).

  • Levine, S. Psychological and social aspects of resilience: a synthesis of risks and resources. Dialogues Clin. Neurosci. 5, 273–280 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller-Graff, L. E. The multidimensional taxonomy of individual resilience. Trauma Violence Abus. 23, 660–675 (2022).


    Google Scholar
     

  • Xie, C. et al. A shared neural basis underlying psychiatric comorbidity. Nat. Med. 29, 1232–1242 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, R. The strengths and difficulties questionnaire: A Rsearch Note. J. Child Psychol. Psychiatry 38, 581–586 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Becker, A., Hagenberg, N., Roessner, V., Woerner, W. & Rothenberger, A. Evaluation of the self-reported SDQ in a clinical setting: do self-reports tell us more than ratings by adult informants?. Eur. Child Adolesc. Psychiatry 13, II17–II24 (2004).

    PubMed 

    Google Scholar
     

  • Bernstein, D. P., Ahluvalia, T., Pogge, D. & Handelsman, L. Validity of the childhood trauma questionnaire in an adolescent psychiatric population. J. Am. Acad. Child Adolesc. Psychiatry 36, 340–348 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Luo, Q. et al. Association of a schizophrenia-risk nonsynonymous variant with putamen volume in adolescents: A voxelwise and genome-wide association study. JAMA Psychiatry 76, 435–445 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, Washington, DC) (1994).

  • World Health Organization. International Classification of Diseases. (1978).

  • World Health Organization. International Classification of Diseases.(1992).

  • Grosbras, M. H. & Paus, T. Brain networks involved in viewing angry hands or faces. Cereb. Cortex 16, 1087–1096 (2006).

    PubMed 

    Google Scholar
     

  • Rolls, E. T., Joliot, M. & Tzourio-Mazoyer, N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 122, 1–5 (2015).

    PubMed 

    Google Scholar
     

  • Peharz, R. & Pernkopf, F. Sparse nonnegative matrix factorization with l0-constraints. Neurocomputing 80, 38–46 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shan, X. et al. Mapping the heterogeneous brain structural phenotype of Autism Spectrum disorder using the normative model. Biol. Psychiatry 91, 967–976 (2022).

    PubMed 

    Google Scholar
     

  • Sahle, B. W. et al. Association between depression, anxiety and weight change in young adults. BMC Psychiatry 19, 398 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forbes, E. E., Phillips, M. L., Silk, J. S., Ryan, N. D. & Dahl, R. E. Neural systems of threat processing in adolescents: role of pubertal maturation and relation to measures of negative affect. Dev. Neuropsychol. 36, 429–452 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernstein, D., Fink, L. & Bernstein, D. Childhood Trauma Questionnaire: A Retrospective Self-Report Manual. (1998).

  • Fleitlich, B., Cortázar, P. G. & Goodman, R. Questionário de capacidades e dificuldades (SDQ). Infanto 8, 44–50 (2000).


    Google Scholar
     

  • Cohen, A. O. et al. When is an adolescent an adult? Assessing cognitive control in emotional and nonemotional contexts. Psychol. Sci. 27, 549–562 (2016).

    PubMed 

    Google Scholar
     

  • Hoffman, E. A. et al. Stress exposures, neurodevelopment and health measures in the ABCD study. Neurobiol. Stress 10, 100157 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Achenbach, T. M. The Achenbach system of empirically based assessment (ASEBA): Development, findings, theory, and applications. (University of Vermont, Research Center for Children, Youth, & Families, 2009).

  • Pandolfi, V., Magyar, C. I. & Dill, C. A. An initial psychometric evaluation of the CBCL 6-18 in a sample of youth with Autism Spectrum disorders. Res. Autism Spectr. Disord. 6, 96–108 (2012).

    PubMed Central 

    Google Scholar