• Caglar, A. E., Gönenç, S. & Destek, M. A. Toward a sustainable environment within the framework of carbon neutrality scenarios: evidence from the novel Fourier-NARD approach. Sustain. Dev. 32, 6643–6655 (2024).

    Article 

    Google Scholar
     

  • Caglar, A. E., Daştan, M., Ahmed, Z., Mert, M. & Avci, S. B. The synergy of renewable energy consumption, green technology, and environmental quality: designing  sustainable development goals policies. Nat. Resour. Forum.  (2024).

  • Wang, C. H. & Juo, W. An environmental policy of green intellectual capital: green innovation strategy for performance sustainability. Bus. Strat Env. 30, 3241–3254 (2021).

  • D’Adamo, I., Di Carlo, C., Gastaldi, M., Rossi, E. N. & Uricchio, A. F. Economic performance, environmental protection and social progress: A cluster analysis comparison towards sustainable development. Sustain. (Switz). 16, 5049–5049 (2024).

    Article 

    Google Scholar
     

  • Ali, I., Rahaman, A., Ali, M. J. & Rahman, F. The growth–environment nexus amid geopolitical risks: cointegration and machine learning algorithm approaches. Discov. Sustain. 6, (2025).

  • Caglar, A. E., Daştan, M., Ahmed, Z., Mert, M. & Avci, S. B. A novel panel of European economies pursuing carbon neutrality: do current climate technology and renewable energy practices really pass through the Prism of sustainable development? Gondwana. Res. (2025).

  • Rasoulinezhad, E. & Taghizadeh-Hesary, F. Role of green finance in improving energy efficiency and renewable energy development. Energy Effic. 15, (2022).

  • Lee, C. C. & Lee, C. C. How does green finance affect green total factor productivity? Evidence from China. Energy Econ. 107, 105863 (2022).

    Article 

    Google Scholar
     

  • Wang, J. & Hao, S. The Spatial impact of carbon trading on harmonious economic and environmental development: evidence from China. Environ. Geochem. Health. 45, 6495–6515 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, Q., Cui, L. & Hong, P. The impact of carbon emissions trading on energy efficiency: evidence from quasi-experiment in china’s carbon emissions trading pilot. Energy Econ. 110, 106025–106025 (2022).

    Article 

    Google Scholar
     

  • Chen, Z., Song, P. & Wang, B. Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from china’s provincial data. Energy Policy. 157, 112507–112507 (2021).

    Article 

    Google Scholar
     

  • Song, M., Du, J. & Tan, K. H. Impact of fiscal decentralization on green total factor productivity. Int. J. Prod. Econ. 205, 359–367 (2018).

    Article 

    Google Scholar
     

  • Liu, J., Cheng, Z. & Zhang, H. Does industrial agglomeration promote the increase of energy efficiency in china?? J. Clean. Prod. 164, 30–37 (2017).

    Article 

    Google Scholar
     

  • Yuan, H., Feng, Y., Lee, C. C. & Cen, Y. How does manufacturing agglomeration affect green economic efficiency? Energy Econ. 92, 104944 (2020).

    Article 

    Google Scholar
     

  • Ali, I., Islam, M. & Ceh, B. Assessing the impact of three emission (3E) parameters on environmental quality in canada: A provincial data analysis using the quantiles via moments approach. Int. J. Green. Energy. 1–19. (2024).

  • Jianda, W., Kangyin, D., Xiucheng, D. & Farhad, T. H. Assessing the digital economy and its carbon-mitigation effects: the case of China. Energy Econ. 113, (2022).

  • Rinku, N., Singh, N. G., Artificial intelligence in sustainable energy industry: status quo, challenges, and opportunities. J. Clean. Prod. 289, 234–237 (2023).


    Google Scholar
     

  • Viskovic, A., Franki, V. & Jevtic, D. Artificial Intelligence as a facilitator of the energy transition. In international convention on information and communication technology. Electron. Microelectron. 494–499. (2022).

  • Xue, Y., Tang, C., Wu, H., Liu, J. & Hao, Y. The emerging driving force of energy consumption in china: does digital economy development matter? Energy Policy. 165, 112997 (2022).

    Article 

    Google Scholar
     

  • Liu, Z. et al. Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: challenges and future perspectives. Energy AI. 10, 100195–100195 (2022).

    Article 

    Google Scholar
     

  • Hussain, M., Yang, S., Maqsood, U. S. & Zahid, R. M. A. Tapping into the green potential: the power of artificial intelligence adoption in corporate green innovation drive. Bus. Strat Env. 33, 4375–4396 (2024).

    Article 

    Google Scholar
     

  • Farzaneh, H. et al. Artificial intelligence evolution in smart buildings for energy efficiency. Appl. Sci. 11, 763 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shahbaz, M., Wang, J., Dong, K. & Zhao, J. The impact of digital economy on energy transition across the globe: the mediating role of government governance. Renew. Sustain. Energy Rev. 166, 112620–112620 (2022).

    Article 

    Google Scholar
     

  • Yi, M., Liu, Y., Sheng, M. S. & Wen, L. Effects of digital economy on carbon emission reduction: new evidence from China. Energy Policy. 171, 113271 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Li, S., Cao, J. & Spulbar, A. C. Does artificial intelligence improve energy efficiency? Evidence from provincial data in China. Energy Econ. 108149–108149. (2024).

  • Zhang, L. et al. Digital economy, energy efficiency, and carbon emissions: evidence from provincial panel data in China. Sci. Total Environ. 852, 158403–158403 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A. & De Felice, F. Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustain. (Switz). 12, 492 (2020).

    Article 

    Google Scholar
     

  • Wei, W. et al. Embodied greenhouse gas emissions from Building china’s large-scale power transmission infrastructure. Nat. Sustain. 4, 739–747 (2021).

    Article 

    Google Scholar
     

  • Dong, K., Sun, R., Hochman, G. & Li, H. Energy intensity and energy conservation potential in china: A regional comparison perspective. Energy 155, 782–795 (2018).

    Article 

    Google Scholar
     

  • Du, L. & Lin, W. Does the application of industrial robots overcome the Solow paradox? Evidence from China. Technol. Soc. 68, 101932 (2022).

    Article 

    Google Scholar
     

  • Cheng, H., Jia, R., Li, D. & Li, H. The rise of robots in China. J. Econ. Perspect. 33, 71–88 (2019).

    Article 

    Google Scholar
     

  • Tao, W., Weng, S., Chen, X., ALHussan, F. B. & Song, M. Artificial intelligence-driven transformations in low-carbon energy structure: evidence from China. Energy Econ. 136, 107719 (2024).

    Article 

    Google Scholar
     

  • Caglar, A. E., Avci, S. B., Gökçe, N. & Destek, M. A. A sustainable study of competitive industrial performance amidst environmental quality: new insight from novel fourier perspective. J. Environ. Manage. 366, 121843 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, J. & Li, H. Can digital technology innovation promote total factor energy efficiency? Firm-level evidence from China. Energy 293, 130682–130682 (2024).

    Article 

    Google Scholar
     

  • Luo, S. et al. Digitalization and sustainable development: how could digital economy development improve green innovation in china?? Bus. Strat Environ. 32, 1847–1871 (2023).

    Article 

    Google Scholar
     

  • Pan, W., Xie, T., Wang, Z. & Ma, L. Digital economy: an innovation driver for total factor productivity. J. Bus. Res. 139, 303–311 (2022).

    Article 

    Google Scholar
     

  • Lyu, Y., Wang, W., Wu, Y. & Zhang, J. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total Environ. 857, 159428 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanafizadeh, P. & Nik, M. R. H. Configuration of data monetization: A review of literature with thematic analysis. Glob J. Flex. Syst. Manag. 21, 17–34 (2019).

    Article 

    Google Scholar
     

  • Jackson, I., Ivanov, D., Dolgui, A. & Namdar, J. Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation. Int. J. Prod. Res. 62, 6120–6145 (2024).

    Article 

    Google Scholar
     

  • Mitra, R., Saha, P. & Kumar Tiwari, M. Sales forecasting of a food and beverage company using deep clustering frameworks. Int. J. Prod. Res. 62, 3320–3332 (2023).

    Article 

    Google Scholar
     

  • Wu, J., Zhang, Z. & Zhou, S. X. Credit rating prediction through supply chains: A machine learning approach. Prod. Oper. Manag. 31, 1613–1629 (2022).

    Article 

    Google Scholar
     

  • Chien, C. F., Lin, Y. S. & Lin, S. K. Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semiconductor component distributor. Int. J. Prod. Res. 58, 2784–2804 (2020).

    Article 

    Google Scholar
     

  • Brooks, R. A. Intelligence without representation. Artif. Intell. 47, 139–159 (1991).

    Article 

    Google Scholar
     

  • Raees, N. The effect of ventilation and economizer on energy consumptions for air source heat pumps in schools. Am. J. Eng. Appl. Sci. 7, 58–65 (2014).

    Article 

    Google Scholar
     

  • Zhu, S. et al. Intelligent computing: the latest advances, challenges, and future. Intell. Comput. 2, (2023).

  • Liu, J., Qian, Y., Yang, Y. & Yang, Z. Can artificial intelligence improve the energy efficiency of manufacturing companies? Evidence from China. IJERPH 19 (2022).

  • Li, P., Yang, J., Islam, M. A., Ren, S. Making AI less ‘Thirsty’: Uncovering and addressing the secret water footprint of AI models. arXiv 2304.03271 (2023).

  • Zhou, X., Zhou, D., Wang, Q. & Su, B. How information and communication technology drives carbon emissions: A sector-level analysis for China. Energy Econ. 81, 380–392 (2019).

    Article 

    Google Scholar
     

  • Li, Z. & Wang, J. The dynamic impact of digital economy on carbon emission reduction: evidence City-level empirical data in China. J. Clean. Prod. 351, 131570–131570 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Diamantoulakis, P. D., Kapinas, V. M. & Karagiannidis, G. K. Big data analytics for dynamic energy management in smart grids. Big Data Res. 2, 94–101 (2015).

    Article 

    Google Scholar
     

  • Pawanr, S. & Gupta, K. A. Review on recent advances in the energy efficiency of machining processes for sustainability. Energies 17, 3659–3659 (2024).

    Article 

    Google Scholar
     

  • Balakrishnan, D., Sharma, P., Bora, B. J. & Dizge, N. Harnessing biomass energy: advancements through machine learning and AI applications for sustainability and efficiency. Chem. Eng. Res. Des. 191, 193–205 (2024).

    CAS 

    Google Scholar
     

  • Mahmood, S. et al. Integrating machine and deep learning technologies in green buildings for enhanced energy efficiency and environmental sustainability. Sci. Rep. 14, (2024).

  • Villarreal, J. A. S., Mendoza, V. S., Acosta, J. A. N. & Ruiz, E. R. Energy consumption outlier detection with AI models in modern cities: a case study from north-eastern Mexico. Algorithms 17, 322–322 (2024).

    Article 

    Google Scholar
     

  • Wang, E. Z., Lee, C. C. & Li, Y. Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries. Energy Econ. 105, 105748 (2022).

    Article 

    Google Scholar
     

  • Lin, B. & Xu, C. The effects of industrial robots on firm energy intensity: from the perspective of technological innovation and electrification. Technol. Forecast. Soc. Chang. 203, 123373–123373 (2024).

    Article 

    Google Scholar
     

  • Wang, Y., Zhao, W. & Ma, X. The Spatial spillover impact of artificial intelligence on energy efficiency: empirical evidence from 278 Chinese cities. Energy 312, 133497 (2024).

    Article 

    Google Scholar
     

  • Acemoglu, D., Autor, D., Dorn, D., Hanson, G. H. & Price, B. Return of the Solow paradox?? IT, productivity, and employment in US manufacturing. am. Econ. Rev. 104, 394–399 (2014).

    Article 

    Google Scholar
     

  • Barbieri, N., Marzucchi, A. & Rizzo, U. Knowledge sources and impacts on subsequent inventions: do green technologies differ from non-green ones? Res. Policy. 49, 103901–103901 (2019).

    Article 

    Google Scholar
     

  • Ouyang, X., Li, Q. & Du, K. How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data. Energy Policy. 139, 111310–111310 (2020).

    Article 

    Google Scholar
     

  • Jenne, C. A. & Cattell, R. K. Structural change and energy efficiency in industry. Energy Econ. 5, 114–123 (1983).

    Article 

    Google Scholar
     

  • Hu, L., Yuan, W., Jiang, J., Ma, T. & Zhu, S. Asymmetric effects of industrial structure rationalization on carbon emissions: evidence from Thirty Chinese provinces. J. Clean. Prod. 428, 139347–139347 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xue, L. et al. Impacts of industrial structure adjustment, upgrade and coordination on energy efficiency: empirical research based on the extended STIRPAT model. Energy Strategy Rev. 43, 100911 (2022).

    Article 

    Google Scholar
     

  • Li, B., Jiang, F., Xia, H. & Pan, J. Under the background of AI application, research on the impact of science and technology innovation and industrial structure upgrading on the sustainable and High-Quality development of regional economies. Sustain. (Switz). 14, 11331 (2022).

    Article 

    Google Scholar
     

  • Su, Y. & Fan, Q. Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of china’s provinces. Technol. Forecast. Soc. Chang. 180, 121727–121727 (2022).

    Article 

    Google Scholar
     

  • Du, K., Cheng, Y. & Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: the road to the green transformation of Chinese cities. Energy Econ. 98, 105247–105247 (2021).

    Article 

    Google Scholar
     

  • Yu, H. et al. How does green technology innovation influence industrial structure? Evidence of heterogeneous environmental regulation effects. Environ. Dev. Sustain. 26, 17875–17903 (2023).

    Article 

    Google Scholar
     

  • Peng, H., Shen, N., Ying, H. & Wang, Q. Can environmental regulation directly promote green innovation behavior?—— based on situation of industrial agglomeration. J. Clean. Prod. 314, 128044 (2021).

    Article 

    Google Scholar
     

  • Chen, L., Li, W., Yuan, K. & Zhang, X. Can informal environmental regulation promote industrial structure upgrading? Evidence from China. Appl. Econ. 54, 2161–2180 (2021).

    Article 

    Google Scholar
     

  • Huang, S. & Ge, J. Are there heterogeneities in environmental risks among different types of resource-based cities in china?? Assessment based on environmental risk field approach. Int. J. Disaster Risk Reduct. 104810–104810. (2024).

  • Wang, K., Chen, X. & Wang, C. The impact of sustainable development planning in resource-based cities on corporate ESG–Evidence from China. Energy Econ. 127, 107087 (2023).

    Article 

    Google Scholar
     

  • Jiang, Z., Yuan, C. & Xu, J. The impact of digital government on energy sustainability: empirical evidence from prefecture-level cities in China. Technol. Forecast. Soc. Chang. 209, 123776–123776 (2024).

    Article 

    Google Scholar
     

  • Lu, S., Zhang, W., Yu, J. & Li, J. The identification of spatial evolution stage of resource-based cities and its development characteristics. Acta Geogr. Sin. 75 2180–2191 (2020).

  • Wang, L. & Shao, J. Digital economy, entrepreneurship and energy efficiency. Energy 269, 126801–126801 (2023).

    Article 

    Google Scholar
     

  • Wu, Y., Shi, K., Chen, Z., Liu, S. & Chang, Z. Developing improved Time-Series DMSP-OLS-Like data (1992–2019) in China by integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Y. & Cheung, A. Climate policy uncertainty and energy transition: evidence from prefecture-level cities in China. Energy Econ. 107938–107938 (2024).

  • Renshaw, E. F. Energy efficiency and the slump in labour productivity in the USA. Energy Econ. 3, 36–42 (1981).

    Article 

    Google Scholar
     

  • Wilson, B., Trieu, L. H. & Bowen, B. Energy efficiency trends in Australia. Energy Policy. 22, 287–295 (1994).

    Article 

    Google Scholar
     

  • Charnes, A., Cooper, W. W. & Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978).

    Article 
    MathSciNet 

    Google Scholar
     

  • Li, M. J. & Tao, W. Q. Review of methodologies and Polices for evaluation of energy efficiency in high energy-consuming industry. Appl. Energy. 187, 203–215 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Muhammad, S., Pan, Y., Agha, M. H., Umar, M. & Chen, S. Industrial structure, energy intensity and environmental efficiency across developed and developing economies: the intermediary role of primary, secondary and tertiary industry. Energy 247, 123576–123576 (2022).

    Article 

    Google Scholar
     

  • Tone, K. A strange case of the cost and allocative efficiencies in DEA. J. Oper. Res. Soc. 53, 1225–1231 (2002).

    Article 

    Google Scholar
     

  • Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 143, 32–41 (2002).

    Article 
    MathSciNet 

    Google Scholar
     

  • Acemoglu, D. & Restrepo, P. Robots and jobs: evidence from US labor markets. J. Political Econ. 128, 2188–2244 (2020).

    Article 

    Google Scholar
     

  • Beaudry, P., Doms, M. & Lewis, E. Should the personal computer be considered a technological revolution?? Evidence from U.S. Metropolitan areas. J. Polit. Econ. 118, 988–1036 (2010).

    Article 

    Google Scholar
     

  • Mann, K. & Püttmann, L. Benign effects of automation: new evidence from patent texts. Rev. Econ. Stat. 105, 562–579 (2021).

    Article 

    Google Scholar
     

  • Autor, D., Chin, C., Salomons, A. & Seegmiller, B. New frontiers: the origins and content of new work, 1940–2018. Q. J. Econ. 139, 1399–1465 (2024).

    Article 

    Google Scholar
     

  • Henderson, J. V. Marshall’s scale economies. J. Urban Econ. 53, 1–28 (2003).

    Article 

    Google Scholar
     

  • Xiong, M., Li, W., Xian, B. T. S. & Yang, A. Digital inclusive finance and enterprise innovation—Empirical evidence from Chinese listed companies. J. Innov. Knowl. 8, 100321 (2023).

    Article 

    Google Scholar
     

  • Kathuria, V. Informal regulation of pollution in a developing country: evidence from India. Ecol. Econ. 63, 403–417 (2007).

    Article 

    Google Scholar
     

  • Pargal, S. & Wheeler, D. Informal regulation of industrial pollution in developing countries: evidence from Indonesia. J. Political Econ. 104, 1314–1327 (1996).

    Article 

    Google Scholar
     

  • Jia, R., Shao, S. & Yang, L. High-speed rail and CO2 emissions in urban china: A Spatial difference-in-differences approach. Energy Econ. 99, 105271–105271 (2021).

    Article 

    Google Scholar
     

  • Luan, F., Yang, X., Chen, Y. & Regis, P. J. Industrial robots and air environment: A moderated mediation model of population density and energy consumption. Sustain. Prod. Consum. 30, 870–888 (2022).

    Article 

    Google Scholar
     

  • Shi, D. & Li, S. Emissions trading system and energy use efficiency: Measurements and empirical evidence for cities at and above the prefecture level. China Industrial Economics 5–23 (2020).

  • Goldsmith-Pinkham, P., Sorkin, I. & Swift, H. Bartik instruments: what, when, why, and how. am. Econ. Rev. 110, 2586–2624 (2020).

    Article 

    Google Scholar
     

  • Borusyak, K., Hull, P. & Jaravel, X. Quasi-experimental shift-share research designs. Rev. Econ. Stud. 89, 181–213 (2021).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. C., Fang, Y., Quan, S. & Li, X. Leveraging the power of artificial intelligence toward the energy transition: the key role of the digital economy. Energy Econ. 135, 107654 (2024).

    Article 

    Google Scholar