Garcia, B. A. et al. Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat. Protoc. 2, 933–938 (2007).
King, J., Patel, M. & Chandrasekaran, S. Metabolism, HDACs, and HDAC inhibitors: a systems biology perspective. Metabolites 11, 792 (2021).
Boumber, Y., Younes, A. & Garcia-Manero, G. Mocetinostat (MGCD0103): a review of an isotype-specific histone deacetylase inhibitor. Expert Opin. Investig. Drugs 20, 823–829 (2011).
Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).
Meers, M. P., Llagas, G., Janssens, D. H., Codomo, C. A. & Henikoff, S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat. Biotechnol. 41, 708–716 (2023).
Orsburn, B. C., Yuan, Y. & Bumpus, N. N. Insights into protein post-translational modification landscapes of individual human cells by trapped ion mobility time-of-flight mass spectrometry. Nat. Commun. 13, 7237 (2022).
Orsburn, B. C. Metabolomic, proteomic, and single-cell proteomic analysis of cancer cells treated with the KRASG12D inhibitor MRTX1133. J. Proteome Res. 22, 3703–3713 (2023).
Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).
Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell. Proteomics 13, 3497–3506 (2014).
Lanz, M. C., Fuentes Valenzuela, L., Elias, J. E. & Skotheim, J. M. Cell size contributes to single-cell proteome variation. J. Proteome Res. 23, 221–231 (2024).
Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteomics 17, 2284–2296 (2018).
Eberhard, C. D. & Orsburn, B. C. A. Multiplexed single-cell proteomic workflow applicable to drug treatment studies. in Proteomics for Drug Discovery (ed. Blonder, J.) 1–10 (Springer, 2024).
Gygi, J. P. et al. Web-based search tool for visualizing instrument performance using the triple knockout (TKO) proteome standard. J. Proteome Res. 18, 687–693 (2019).
Paulo, J. A., O’Connell, J. D. & Gygi, S. P. A Triple Knockout (TKO) Proteomics Standard for Diagnosing Ion Interference in Isobaric Labeling Experiments. J. Am. Soc. Mass Spectrom. 27, 1674–1681 (2016).
Yates, J. R., Ruse, C. I. & Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 49–79 (2009).
Bian, Y. et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat. Commun. 11, 157 (2020).
Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteomics 14, 1400–1410 (2015)
Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics 11, 1475–88 (2012).
Singh, C., Zampronio, C. G., Creese, A. J. & Cooper, H. J. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J. Proteome Res. 11, 4517–4525 (2012).
Zolg, D. P. et al. ProteomeTools: systematic characterization of 21 post-translational protein modifications by liquid chromatography tandem mass spectrometry (LC-MS/MS) using synthetic peptides. Mol. Cell. Proteomics 17, 1850–1863 (2018).
Armony, G. et al. The GlycoPaSER prototype as a real-time N-glycopeptide identification tool based on the PaSER parallel computing platform. Int. J. Mol. Sci. 24, 7869 (2023).
Toghi Eshghi, S. et al. Classification of tandem mass spectra for identification of N- and O-linked glycopeptides. Sci. Rep. 6, 37189 (2016).
Jenkins, C. & Orsburn, B. C. Simple tool for rapidly assessing the quality of multiplexed single cell proteomics data. J. Am. Soc. Mass Spectrom. 34, 1709–1711 (2023).
Gallia, J., Lavrich, K., Tan-Wilson, A. & Madden, P. H. Filtering of MS/MS data for peptide identification. BMC Genomics 14, S2 (2013).
Chang, Y.-C. et al. Decrypting lysine deacetylase inhibitor action and protein modifications by dose-resolved proteomics. Cell Rep. 43, 113612 (2024).
Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).
Sui, J. et al. Plasma levels of S100A8/A9, histone/DNA complexes, and cell-free DNA predict adverse outcomes of immune thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 19, 370–379 (2021).
Orsburn, B. C. An integrated method for single cell proteomics with simultaneous measurements of intracellular drug concentration implicates new mechanisms for adaptation to KRASG12D inhibitors. bioRxiv https://doi.org/10.1101/2023.11.18.567669 (2023).
Mardis, E. R. ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614 (2007).
Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).
Dickson, B. M., Kupai, A., Vaughan, R. M. & Rothbart, S. B. Streamlined quantitative analysis of histone modification abundance at nucleosome-scale resolution with siQ-ChIP version 2.0. Sci. Rep. 13, 7508 (2023).
Berendzen, K. W., Grefen, C., Sakamoto, T. & Slane, D. Analysis of chromatin accessibility, histone modifications, and transcriptional states in specific cell types using flow cytometry. In Plant Gene Regulatory Networks: Methods and Protocols (eds. Kaufmann, K. & Vandepoele, K.) 57–73 (Springer US, New York, NY, 2023).
Cheung, P. et al. Single-cell epigenetics—chromatin modification atlas unveiled by mass cytometry. Clin. Immunol. 196, 40–48 (2018).
Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).
Ctortecka, C. & Mechtler, K. The rise of single-cell proteomics. Anal. Sci. Adv. 2, 240–254 (2021).
Schoof, E. M. et al. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 12, 3341 (2021).
Doerr, A. DIA mass spectrometry. Nat. Methods https://doi.org/10.1038/nmeth.3234 (2014).
Szyrwiel, L., Sinn, L., Ralser, M. & Demichev, V. Slice-PASEF: fragmenting all ions for maximum sensitivity in proteomics. bioRxiv https://doi.org/10.1101/2022.10.31.514544 (2022).
Kreimer, S. et al. High-throughput single-cell proteomic analysis of organ-derived heterogeneous cell populations by nanoflow dual-trap single-column liquid chromatography. Anal. Chem. 95, 9145–9150 (2023).
Truong, T. et al. Data-dependent acquisition with precursor coisolation improves proteome coverage and measurement throughput for label-free single-cell proteomics**. Angew. Chem. Int. Ed. 62, e202303415 (2023).
Orsburn, B. C. Proteome discoverer—a community enhanced data processing suite for protein informatics. Proteomes 9, 15 (2021).