Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).
Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 6, 875–891 (2021).
Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).
Van Damme, J. et al. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature 634, 74–79 (2024).
Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).
Martin, M. J. et al. Energy use in quantum data centers: scaling the impact of computer architecture, qubit performance, size, and thermal parameters. IEEE Trans. Sustain. Comput. 7, 864–874 (2022).
Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).
Anferov, A., Lee, K.-H., Zhao, F., Simon, J. & Schuster, D. I. Improved coherence in optically defined niobium trilayer-junction qubits. Phys. Rev. Appl. 21, 024047 (2024).
Anferov, A. et al. Superconducting qubits above 20 GHz operating over 200 mK. PRX Quantum 5, 020336 (2024).
Anferov, A., Wan, F., Harvey, S. P., Simon, J. & Schuster, D. I. Millimeter-wave superconducting qubit. PRX Quantum 6, 020336 (2025).
Nakamura, Y. et al. Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions. Appl. Phys. Lett. 99, 212502 (2011).
Kim, S. et al. Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Commun. Mater. 2, 21 (2021).
Tinkham, M. Introduction to Superconductivity 2nd edn (Dover Publications, 2004).
Wang, Z., Shinozaki, K., Murooka, Y., & Kuzmin, L. S. High-quality epitaxial NbN/AlN/NbN tunnel junctions with a wide range of current density. Appl. Phys. Lett. 102, 102601 (2013).
Makise, K., Terai, H. & Uzawa, Y. NbN/AlN/NbN/TiN tunnel junctions on Si (100) substrate for superconducting devices. IEEE Trans. Appl. Supercond. 26, 1100403 (2016).
Qiu, W. & Terai, H. Fabrication of deep-sub-micrometer NbN/AlN/NbN epitaxial junctions on a Si-substrate. Appl. Phys. Express 13, 126501 (2020).
George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).
Deyu, G. K. et al. Recent advances in atomic layer deposition of superconducting thin films: a review. Mater. Horiz. 12, 5594–5626 (2025).
Zhao, C. & Xiang, J. Atomic layer deposition (ALD) of metal gates for CMOS. Appl. Sci. 9, 2388 (2019).
Sheng, J. et al. Review article: atomic layer deposition for oxide semiconductor thin film transistors: advances in research and development. J. Vac. Sci. Technol. A 36, 060801 (2018).
Waechtler, T. et al. ALD-grown seed layers for electrochemical copper deposition integrated with different diffusion barrier systems. Microelectron. Eng. 88, 684–689 (2011).
Chen, R. et al. Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation. Int. J. Extrem. Manuf. 6, 022003 (2024).
Sowa, M. J. et al. Plasma-enhanced atomic layer deposition of superconducting niobium nitride. J. Vac. Sci. Technol. A 35, 01B143 (2017).
Cheng, R., Wang, S. & Tang, H. X. Superconducting nanowire single-photon detectors fabricated from atomic-layer-deposited NbN. Appl. Phys. Lett. 115, 241101 (2019).
Wilt, J. et al. Atomically thin Al2O3 films for tunnel junctions. Phys. Rev. Appl. 7, 064022 (2017).
Jhabvala, C. A., Nagler, P. C. & Stevenson, T. R. Atomic layer deposition Josephson junctions for cryogenic circuit applications. J. Low. Temp. Phys. 200, 331–335 (2020).
Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf. 3, 42 (2017).
Alevli, M., Ozgit, C., Donmez, I. & Biyikli, N. The influence of N2/H2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition. J. Cryst. Growth 335, 51–57 (2011).
Goerke, S. et al. Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H2/N2 plasma. Appl. Surf. Sci. 338, 35–41 (2015).
Shibalov, M. V. et al. Ultrathin epitaxial NbNx film deposited by PEALD method on C-plane sapphire: growth, structure and superconducting properties. Appl. Surf. Sci. 612, 155697 (2023).
Dang, P. et al. An all-epitaxial nitride heterostructure with concurrent quantum hall effect and superconductivity. Sci. Adv. 7, eabf1388 (2021).
Yaddanapudi, K. First-principles study of structural phase transformation and dynamical stability of cubic AlN semiconductors. AIP Adv. 8, 125006 (2018).
Chen, Z., Holec, D., Bartosik, M., Mayrhofer, P. H. & Zhang, Z. Crystallographic orientation dependent maximum layer thickness of cubic AlN in CrN/AlN multilayers. Acta Mater. 168, 190–202 (2019).
Shih, H.-Y. et al. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Sci. Rep. 7, 17307 (2017).
Grönberg, L. et al. Side-wall spacer passivated sub-μm Josephson junction fabrication process. Supercond. Sci. Technol. 30, 125016 (2017).
Higurashi, E., Okumura, K., Kunimune, Y., Suga, T. & Hagiwara, K. Room-temperature bonding of wafers with smooth Au thin films in ambient air using a surface-activated bonding method. IEICE Trans. Electron. E100.C, 156–160 (2017).
Zhao, R. et al. Merged-element transmon. Phys. Rev. Appl. 14, 064006 (2020).
Mamin, H. J. et al. Merged-element transmons: design and qubit performance. Phys. Rev. Appl. 16, 034035 (2021).
Blais, A., Grimsmo, A. L., Girvin, S. M., & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).
Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).
Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
Gao, Y. Y., Rol, M. A., Touzard, S., & Wang, C. Practical guide for building superconducting quantum devices. PRX Quantum 2, 047001 (2021).
Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).
Catelani, G., Schoelkopf, R. J., Devoret, M. H. & Glazman, L. I. Relaxation and frequency shifts induced by quasiparticles in superconducting qubits. Phys. Rev. B 84, 064517 (2011).
Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).
Jin, X. Y. et al. Thermal and residual excited-state population in a 3D transmon qubit. Phys. Rev. Lett. 114, 240501 (2015).
Lisenfeld, J., Lukashenko, A., Ansmann, M., Martinis, J. M. & Ustinov, A. V. Temperature dependence of coherent oscillations in Josephson phase qubits. Phys. Rev. Lett. 99, 170504 (2007).
Lvov, D. S., Lemziakov, S. A., Ankerhold, E., Peltonen, J. T. & Pekola, J. P. Thermometry based on a superconducting qubit. Phys. Rev. Appl. 23, 054079 (2025).
Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).
Huang, S. et al. Microwave package design for superconducting quantum processors. PRX Quantum 2, 047003 (2021).
Tang, F. et al. Practical issues for atom probe tomography analysis of III-nitride semiconductor materials. Microsc. Microanal. 21, 544–556 (2015).