• Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

  • Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 6, 875–891 (2021).

    Article 

    Google Scholar
     

  • Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Van Damme, J. et al. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature 634, 74–79 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

  • Martin, M. J. et al. Energy use in quantum data centers: scaling the impact of computer architecture, qubit performance, size, and thermal parameters. IEEE Trans. Sustain. Comput. 7, 864–874 (2022).

    Article 

    Google Scholar
     

  • Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anferov, A., Lee, K.-H., Zhao, F., Simon, J. & Schuster, D. I. Improved coherence in optically defined niobium trilayer-junction qubits. Phys. Rev. Appl. 21, 024047 (2024).

  • Anferov, A. et al. Superconducting qubits above 20 GHz operating over 200 mK. PRX Quantum 5, 020336 (2024).

  • Anferov, A., Wan, F., Harvey, S. P., Simon, J. & Schuster, D. I. Millimeter-wave superconducting qubit. PRX Quantum 6, 020336 (2025).

    Article 

    Google Scholar
     

  • Nakamura, Y. et al. Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions. Appl. Phys. Lett. 99, 212502 (2011).

    Article 

    Google Scholar
     

  • Kim, S. et al. Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Commun. Mater. 2, 21 (2021).

  • Tinkham, M. Introduction to Superconductivity 2nd edn (Dover Publications, 2004).

  • Wang, Z., Shinozaki, K., Murooka, Y., & Kuzmin, L. S. High-quality epitaxial NbN/AlN/NbN tunnel junctions with a wide range of current density. Appl. Phys. Lett. 102, 102601 (2013).

  • Makise, K., Terai, H. & Uzawa, Y. NbN/AlN/NbN/TiN tunnel junctions on Si (100) substrate for superconducting devices. IEEE Trans. Appl. Supercond. 26, 1100403 (2016).

    Article 

    Google Scholar
     

  • Qiu, W. & Terai, H. Fabrication of deep-sub-micrometer NbN/AlN/NbN epitaxial junctions on a Si-substrate. Appl. Phys. Express 13, 126501 (2020).

    Article 
    CAS 

    Google Scholar
     

  • George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deyu, G. K. et al. Recent advances in atomic layer deposition of superconducting thin films: a review. Mater. Horiz. 12, 5594–5626 (2025).

  • Zhao, C. & Xiang, J. Atomic layer deposition (ALD) of metal gates for CMOS. Appl. Sci. 9, 2388 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, J. et al. Review article: atomic layer deposition for oxide semiconductor thin film transistors: advances in research and development. J. Vac. Sci. Technol. A 36, 060801 (2018).

    Article 

    Google Scholar
     

  • Waechtler, T. et al. ALD-grown seed layers for electrochemical copper deposition integrated with different diffusion barrier systems. Microelectron. Eng. 88, 684–689 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chen, R. et al. Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation. Int. J. Extrem. Manuf. 6, 022003 (2024).

    Article 

    Google Scholar
     

  • Sowa, M. J. et al. Plasma-enhanced atomic layer deposition of superconducting niobium nitride. J. Vac. Sci. Technol. A 35, 01B143 (2017).

    Article 

    Google Scholar
     

  • Cheng, R., Wang, S. & Tang, H. X. Superconducting nanowire single-photon detectors fabricated from atomic-layer-deposited NbN. Appl. Phys. Lett. 115, 241101 (2019).

    Article 

    Google Scholar
     

  • Wilt, J. et al. Atomically thin Al2⁢O3 films for tunnel junctions. Phys. Rev. Appl. 7, 064022 (2017).

  • Jhabvala, C. A., Nagler, P. C. & Stevenson, T. R. Atomic layer deposition Josephson junctions for cryogenic circuit applications. J. Low. Temp. Phys. 200, 331–335 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf. 3, 42 (2017).

  • Alevli, M., Ozgit, C., Donmez, I. & Biyikli, N. The influence of N2/H2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition. J. Cryst. Growth 335, 51–57 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Goerke, S. et al. Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H2/N2 plasma. Appl. Surf. Sci. 338, 35–41 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Shibalov, M. V. et al. Ultrathin epitaxial NbNx film deposited by PEALD method on C-plane sapphire: growth, structure and superconducting properties. Appl. Surf. Sci. 612, 155697 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dang, P. et al. An all-epitaxial nitride heterostructure with concurrent quantum hall effect and superconductivity. Sci. Adv. 7, eabf1388 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaddanapudi, K. First-principles study of structural phase transformation and dynamical stability of cubic AlN semiconductors. AIP Adv. 8, 125006 (2018).

    Article 

    Google Scholar
     

  • Chen, Z., Holec, D., Bartosik, M., Mayrhofer, P. H. & Zhang, Z. Crystallographic orientation dependent maximum layer thickness of cubic AlN in CrN/AlN multilayers. Acta Mater. 168, 190–202 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shih, H.-Y. et al. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Sci. Rep. 7, 17307 (2017).

  • Grönberg, L. et al. Side-wall spacer passivated sub-μm Josephson junction fabrication process. Supercond. Sci. Technol. 30, 125016 (2017).

    Article 

    Google Scholar
     

  • Higurashi, E., Okumura, K., Kunimune, Y., Suga, T. & Hagiwara, K. Room-temperature bonding of wafers with smooth Au thin films in ambient air using a surface-activated bonding method. IEICE Trans. Electron. E100.C, 156–160 (2017).

    Article 

    Google Scholar
     

  • Zhao, R. et al. Merged-element transmon. Phys. Rev. Appl. 14, 064006 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mamin, H. J. et al. Merged-element transmons: design and qubit performance. Phys. Rev. Appl. 16, 034035 (2021).

  • Blais, A., Grimsmo, A. L., Girvin, S. M., & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

  • Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article 

    Google Scholar
     

  • Gao, Y. Y., Rol, M. A., Touzard, S., & Wang, C. Practical guide for building superconducting quantum devices. PRX Quantum 2, 047001 (2021).

  • Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Catelani, G., Schoelkopf, R. J., Devoret, M. H. & Glazman, L. I. Relaxation and frequency shifts induced by quasiparticles in superconducting qubits. Phys. Rev. B 84, 064517 (2011).

    Article 

    Google Scholar
     

  • Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).

  • Jin, X. Y. et al. Thermal and residual excited-state population in a 3D transmon qubit. Phys. Rev. Lett. 114, 240501 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisenfeld, J., Lukashenko, A., Ansmann, M., Martinis, J. M. & Ustinov, A. V. Temperature dependence of coherent oscillations in Josephson phase qubits. Phys. Rev. Lett. 99, 170504 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lvov, D. S., Lemziakov, S. A., Ankerhold, E., Peltonen, J. T. & Pekola, J. P. Thermometry based on a superconducting qubit. Phys. Rev. Appl. 23, 054079 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S. et al. Microwave package design for superconducting quantum processors. PRX Quantum 2, 047003 (2021).

  • Tang, F. et al. Practical issues for atom probe tomography analysis of III-nitride semiconductor materials. Microsc. Microanal. 21, 544–556 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar