• Feldman, D. E. & Halperin, B. I. Fractional charge and fractional statistics in the quantum Hall effects. Rep. Prog. Phys. 84, 076501 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Saminadayar, L., Glattli, D., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526 (1997).

    Article 
    ADS 

    Google Scholar
     

  • De-Picciotto, R. et al. Direct observation of a fractional charge. Phys. B Condens. Matter 249, 395–400 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Dolev, M., Heiblum, M., Umansky, V., Stern, A. & Mahalu, D. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Venkatachalam, V., Yacoby, A., Pfeiffer, L. & West, K. Local charge of the ν = 5/2 fractional quantum Hall state. Nature 469, 185–188 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ma, K. K. W., Peterson, M. R., Scarola, V. W. & Yang, K. Fractional quantum Hall effect at the filling factor ν = 5/2. Encycl. Condens. Matter Phys. 1, 324–365 (2024).

    Article 

    Google Scholar
     

  • Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry-Pérot quantum Hall interferometer. Phys. Rev. B 83, 155440 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Fabry-Pérot interferometry at the ν = 2/5 fractional quantum Hall state. Phys. Rev. X 13, 041012 (2023).


    Google Scholar
     

  • Déprez, C. et al. A tunable Fabry–Pérot quantum Hall interferometer in graphene. Nat. Nanotechnol. 16, 555–562 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronen, Y. et al. Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. Nat. Nanotechnol. 16, 563–569 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fu, H. et al. Aharonov–Bohm oscillations in bilayer graphene quantum Hall edge state Fabry–Pérot interferometers. Nano Lett. 23, 718–725 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. 19, 1619–1626 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Werkmeister, T. et al. Anyon braiding and telegraph noise in a graphene interferometer. Science 388, 730–735 (2025).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Samuelson, N. L. et al. Anyonic statistics and slow quasiparticle dynamics in a graphene fractional quantum Hall interferometer. Preprint at https://arxiv.org/abs/2403.19628v1 (2024).

  • Ghosh, B. et al. Anyonic braiding in a chiral Mach–Zehnder interferometer. Nat. Phys. 21, 1392–1397 (2025).

    Article 

    Google Scholar
     

  • Ghosh, B., Labendik, M., Umansky, V., Heiblum, M. & Mross, D. F. Coherent bunching of anyons and dissociation in an interference experiment. Nature 642, 922–927 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Taktak, I. et al. Two-particle time-domain interferometry in the fractional quantum Hall effect regime. Nat. Commun. 13, 5863 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruelle, M. et al. Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023).


    Google Scholar
     

  • Lee, J.-Y. M. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Glidic, P. et al. Cross-correlation investigation of anyon statistics in the ν = 1/3 and 2/5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023).


    Google Scholar
     

  • Glidic, P. et al. Signature of anyonic statistics in the integer quantum Hall regime. Nat. Commun. 15, 6578 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenow, B., Levkivskyi, I. P. & Halperin, B. I. Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Willett, R. et al. Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding. Phys. Rev. X 13, 011028 (2023).


    Google Scholar
     

  • Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776 (1987).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Falson, J. et al. Even-denominator fractional quantum Hall physics in ZnO. Nat. Phys. 11, 347–351 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zibrov, A. et al. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. Nat. Phys. 14, 930–935 (2018).

    Article 

    Google Scholar
     

  • Ki, D.-K., Fal’ko, V. I., Abanin, D. A. & Morpurgo, A. F. Observation of even denominator fractional quantum Hall effect in suspended bilayer graphene. Nano Lett. 14, 2135–2139 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Even-denominator fractional quantum Hall states in bilayer graphene. Science 358, 648–652 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kumar, R. et al. Quarter- and half-filled quantum Hall states and their topological orders revealed by daughter states in bilayer graphene. Nat. Commun. 16, 7255 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dutta, B. et al. Distinguishing between non-abelian topological orders in a quantum Hall system. Science 375, 193–197 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Son, D. T. Is the composite fermion a Dirac particle? Phys. Rev. X 5, 031027 (2015).


    Google Scholar
     

  • Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Lee, S.-S., Ryu, S., Nayak, C. & Fisher, M. P. A. Particle-hole symmetry and the ν = 5/2 quantum Hall state. Phys. Rev. Lett. 99, 236807 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Levin, M. & Halperin, B. I. Collective states of non-Abelian quasiparticles in a magnetic field. Phys. Rev. B 79, 205301 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Huang, K. et al. Valley isospin controlled fractional quantum Hall states in bilayer graphene. Phys. Rev. X 12, 031019 (2022).


    Google Scholar
     

  • Singh, S. K. et al. Topological phase transition between Jain states and daughter states of the ν = 1/2 fractional quantum Hall state. Nat. Phys. 20, 1247–1252 (2024).

    Article 

    Google Scholar
     

  • Bid, A., Ofek, N., Heiblum, M., Umansky, V. & Mahalu, D. Shot noise and charge at the 2/3 composite fractional quantum Hall state. Phys. Rev. Lett. 103, 236802 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Kivelson, S. Semiclassical theory of localized many-anyon states. Phys. Rev. Lett. 65, 3369 (1990).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chamon, C. d. C., Freed, D., Kivelson, S., Sondhi, S. & Wen, X. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Stern, A. & Halperin, B. I. Proposed experiments to probe the non-Abelian ν = 5/2 quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bonderson, P., Kitaev, A. & Shtengel, K. Detecting non-Abelian statistics in the ν = 5/2 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kivelson, S. A. & Murthy, C. Modified interferometer to measure anyonic braiding statistics. Phys. Rev. Lett. 135, 126605 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kane, C., Fisher, M. P. & Polchinski, J. Randomness at the edge: theory of quantum Hall transport at filling ν = 2/3. Phys. Rev. Lett. 72, 4129 (1994).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. Evidence for correlated electron pairs and triplets in quantum Hall interferometers. Nat. Commun. 15, 10064 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. Aharonov–Bohm interference in even-denominator fractional quantum Hall states. Zenodo https://doi.org/10.5281/zenodo.17454013 (2025).