• Faddeev, L. D. Quantization of solitons. In Proc. 18th International Conference on High-Energy Physics (1975).

  • Faddeev, L. & Niemi, A. J. Stable knot-like structures in classical field theory. Nature 387, 58–61 (1997).

    Article 

    Google Scholar
     

  • Faddeev, L. & Niemi, A. J. Partially dual variables in SU(2) Yang-Mills theory. Phys. Rev. Lett. 82, 1624–1627 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Rañada, A. F. & Trueba, J. L. Ball lightning an electromagnetic knot?. Nature 383, 32 (1996).

    Article 

    Google Scholar
     

  • Radu, E. & Volkov, M. S. Stationary ring solitons in field theory—knots and vortons. Phys. Rep. 468, 101–151 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ackerman, P. J. & Smalyukh, I. I. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat. Mater. 16, 426–432 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Kosevich, A. M., Ivanov, B. A. & Kovalev, A. S. Magnetic solitons. Phys. Rep. 194, 117–238 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article 

    Google Scholar
     

  • Pershoguba, S. S., Andreoli, D. & Zang, J. Electronic scattering off a magnetic hopfion. Phys. Rev. B 104, 075102 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Watanabe, H. & Nagaosa, N. Emergent magnetomultipoles and nonlinear responses of a magnetic hopfion. Phys. Rev. Lett. 129, 267201 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Raftrey, D. & Fischer, P. Field-driven dynamics of magnetic hopfions. Phys. Rev. Lett. 127, 257201 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tai, J.-S. B. & Smalyukh, I. I. Three-dimensional crystals of adaptive knots. Science 365, 1449–1453 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Voinescu, R., Tai, J.-S. B. & Smalyukh, I. I. Hopf solitons in helical and conical backgrounds of chiral magnetic solids. Phys. Rev. Lett. 125, 057201 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kuchkin, V. M. et al. Heliknoton in a film of cubic chiral magnet. Front. Phys. 11, 1201018 (2023).

  • Liu, Y., Lake, R. K. & Zang, J. Binding a hopfion in a chiral magnet nanodisk. Phys. Rev. B 98, 174437 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sutcliffe, P. Skyrmion knots in frustrated magnets. Phys. Rev. Lett. 118, 247203 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wilczek, F. & Zee, A. Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett. 51, 2250–2252 (1983).

    Article 

    Google Scholar
     

  • Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Electrical manipulation of skyrmions in a chiral magnet. Nat. Commun. 13, 1593 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Song, D. et al. Steady motion of 80-nm-size skyrmions in a 100-nm-wide track. Nat. Commun. 15, 5614 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng, F. et al. Hopfion rings in a cubic chiral magnet. Nature 623, 718–723 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Seki, S. et al. Direct visualization of the three-dimensional shape of skyrmion strings in a noncentrosymmetric magnet. Nat. Mater. 21, 181–187 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wolf, D. et al. Unveiling the three-dimensional magnetic texture of skyrmion tubes. Nat. Nanotechnol. 17, 250–255 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Real-space observations of three-dimensional antiskyrmions and skyrmion strings. Nano Lett. 22, 9358–9364 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Raftrey, D. et al. Quantifying the topology of magnetic skyrmions in three dimensions. Sci. Adv. 10, eadp8615 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peng, L. et al. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nat. Commun. 12, 6797 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S. et al. Fundamentals and applications of the skyrmion Hall effect. Appl. Phys. Rev. 11, 041335 (2024).

  • Song, D. et al. Experimental observation of one-dimensional motion of interstitial skyrmion in FeGe. Preprint at https://doi.org/10.48550/arXiv.2212.08991 (2022).

  • Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photon. 18, 15–25 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gubbiotti, G. et al. 2025 roadmap on 3D nano-magnetism. J. Phys. Condens. Matter 37, 143502 (2025).

  • Zhang, Z. et al. Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning. Sci. Adv. 9, eade7439 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Donnelly, C. et al. Experimental observation of vortex rings in a bulk magnet. Nat. Phys. 17, 316–321 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Azhar, M., Kravchuk, V. P. & Garst, M. Screw dislocations in chiral magnets. Phys. Rev. Lett. 128, 157204 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guslienko, K. Y. Emergent magnetic field and vector potential of the toroidal magnetic hopfions. Chaos Solitons Fractals 174, 113840 (2023).

    Article 

    Google Scholar
     

  • Azhar, M., Shaju, S. C., Knapman, R., Pignedoli, A. & Everschor-Sitte, K. 3D magnetic textures with mixed topology: unlocking the tunable Hopf index. Preprint at https://doi.org/10.48550/arXiv.2411.06929 (2024).

  • Donnelly, C. et al. in Curvilinear Micromagnetism: From Fundamentals to Applications (eds Makarov, D. & Sheka, D. D.) 269–304 (Springer International Publishing, 2022).

  • Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, Y. & Nagaosa, N. Current-induced creation of topological vortex rings in a magnetic nanocylinder. Phys. Rev. Lett. 132, 126701 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Völkl, E., Allard, L. F. & Frost, B. A software package for the processing and reconstruction of electron holograms. J. Microsc. 180, 39–50 (1995).

    Article 

    Google Scholar
     

  • Tonomura, A. et al. Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982).

    Article 

    Google Scholar
     

  • McCray, A. R. C., Cote, T., Li, Y., Petford-Long, A. K. & Phatak, C. Understanding complex magnetic spin textures with simulation-assisted Lorentz transmission electron microscopy. Phys. Rev. Appl. 15, 044025 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article 

    Google Scholar
     

  • Wang, W., Lyu, B., Kong, L., Fangohr, H. & Du, H. MicroMagnetic.jl: a Julia package for micromagnetic and atomistic simulations with GPU support. Chin. Phys. B 33, 107508 (2024).

    Article 

    Google Scholar
     

  • Ludgren, L., Beckman, O., Attia, V., Bhattacheriee, S. P. & Richardson, M. Helical spin arrangement in cubic FeGe. Phys. Scr. 1, 69 (1970).

    Article 

    Google Scholar
     

  • Yin, G. et al. Topological charge analysis of ultrafast single skyrmion creation. Phys. Rev. B 93, 174403 (2016).

    Article 

    Google Scholar
     

  • Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

    Article 

    Google Scholar
     

  • Tretiakov, O. A., Clarke, D., Chern, G.-W., Bazaliy, Y.aB. & Tchernyshyov, O. Dynamics of domain walls in magnetic nanostrips. Phys. Rev. Lett. 100, 127204 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar