• Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Abbott, B. P. et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016); erratum 121, 129902 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Abbott, R. et al. Tests of general relativity with GWTC-3. Phys. Rev. D 112, 084080 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Abbott, R. et al. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Phys. Rev. X 13, 011048 (2023).


    Google Scholar
     

  • Isi, M., Giesler, M., Farr, W. M., Scheel, M. A. & Teukolsky, S. A. Testing the no-hair theorem with GW150914. Phys. Rev. Lett. 123, 111102 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Isi, M., Farr, W. M., Giesler, M., Scheel, M. A. & Teukolsky, S. A. Testing the black-hole area law with GW150914. Phys. Rev. Lett. 127, 011103 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Cardoso, V., Franzin, E. & Pani, P. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116, 171101 (2016) ; erratum 117, 089902 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Teukolsky, S. A. Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Berti, E., Cardoso, J., Cardoso, V. & Cavaglia, M. Matched-filtering and parameter estimation of ringdown waveforms. Phys. Rev. D 76, 104044 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Dreyer, O. et al. Black hole spectroscopy: testing general relativity through gravitational wave observations. Class. Quantum Grav. 21, 787–804 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Christensen, N. & Meyer, R. Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis. Phys. Rev. D 58, 082001 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Sharma, S. Markov chain Monte Carlo methods for Bayesian data analysis in astronomy. Ann. Rev. Astron. Astrophys. 55, 213–259 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Skilling, J. Nested sampling. AIP Conf. Proc. 735, 395 (2004).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).

    Article 
    MathSciNet 

    Google Scholar
     

  • Abac, A. et al. The science of the Einstein Telescope. Preprint at http://arxiv.org/abs/2503.12263 (2025).

  • Hu, Q. & Veitch, J. Costs of Bayesian parameter estimation in third-generation gravitational wave detectors: an assessment of current acceleration methods. Phys. Rev. D 112, 084039 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Reitze, D. et al. Cosmic Explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 035 (2019).


    Google Scholar
     

  • Reitze, D. et al. The US program in ground-based gravitational wave science: contribution from the LIGO laboratory. Bull. Am. Astron. Soc. 51, 141 (2019).


    Google Scholar
     

  • Punturo, M. et al. The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Grav. 27, 194002 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Hild, S. et al. Sensitivity studies for third-generation gravitational wave observatories. Class. Quantum Grav. 28, 094013 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at http://arxiv.org/abs/1702.00786 (2017).

  • Hu, W.-R. & Wu, Y.-L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl Sci. Rev. 4, 685–686 (2017).

    Article 

    Google Scholar
     

  • Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Grav. 33, 035010 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bhagwat, S., Pacilio, C., Barausse, E. & Pani, P. Landscape of massive black-hole spectroscopy with LISA and the Einstein Telescope. Phys. Rev. D 105, 124063 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bhagwat, S., Pacilio, C., Pani, P. & Mapelli, M. Landscape of stellar-mass black-hole spectroscopy with third-generation gravitational-wave detectors. Phys. Rev. D 108, 043019 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Pitte, C., Baghi, Q., Besançon, M. & Petiteau, A. Exploring tests of the no-hair theorem with LISA. Phys. Rev. D 110, 104003 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Berti, E., Cardoso, V. & Starinets, A. O. Quasinormal modes of black holes and black branes. Class. Quantum Grav. 26, 163001 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bhagwat, S., Forteza, X. J., Pani, P. & Ferrari, V. Ringdown overtones, black hole spectroscopy, and no-hair theorem tests. Phys. Rev. D 101, 044033 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Jaranowski, P., Krolak, A. & Schutz, B. F. Data analysis of gravitational-wave signals from spinning neutron stars. 1. The signal and its detection. Phys. Rev. D 58, 063001 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H.-T., Yim, G., Chen, X. & Shao, L. Gravitational wave ringdown analysis using the F-statistic. Astrophys. J. 974, 230 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H.-T., Wang, Z., Dong, Y., Yim, G. & Shao, L. Reanalyzing the ringdown signal of GW150914 using the F-statistic method. Phys. Rev. D 111, 064037 (2025).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Prix, R. Bayesian QNM search on GW150914. LIGO Document T1500618-v4 (LIGO, 2016); https://dcc.ligo.org/LIGO-T1500618/public

  • Isi, M. & Farr, W. M. Analyzing black-hole ringdowns. Preprint at http://arxiv.org/abs/2107.05609 (2021).

  • Prix, R. & Krishnan, B. Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics. Class. Quantum Grav. 26, 204013 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ashok, A., Covas, P. B., Prix, R. & Papa, M. A. Bayesian F-statistic-based parameter estimation of continuous gravitational waves from known pulsars. Phys. Rev. D 109, 104002 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Gabbard, H., Messenger, C., Heng, I. S., Tonolini, F. & Murray, R. Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. Nat. Phys. 18, 112–117 (2022).

    Article 

    Google Scholar
     

  • Dax, M. et al. Real-time gravitational wave science with neural posterior estimation. Phys. Rev. Lett. 127, 241103 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dax, M. et al. Neural importance sampling for rapid and reliable gravitational-wave inference. Phys. Rev. Lett. 130, 171403 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Pacilio, C., Bhagwat, S. & Cotesta, R. Simulation-based inference of black hole ringdowns in the time domain. Phys. Rev. D 110, 083010 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Robert, C. P. & Casella, G. Monte Carlo Statistical Methods (Springer, 2004).

  • Boyle, M. et al. The SXS Collaboration catalog of binary black hole simulations. Class. Quantum Grav. 36, 195006 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Higson, E., Handley, W., Hobson, M. & Lasenby, A. Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. Stat. Comput. 29, 891 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ashton, G. et al. Bilby: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Giesler, M., Isi, M., Scheel, M. A. & Teukolsky, S. Black hole ringdown: the importance of overtones. Phys. Rev. X 9, 041060 (2019).


    Google Scholar
     

  • Peyré, G. & Cuturi, M. Computational optimal transport: with applications to data science. Found. Trends Mach. Learn. 11, 355–607 (2019).

    Article 

    Google Scholar
     

  • Wang, Y., Shang, Y. & Babak, S. EMRI data analysis with a phenomenological waveform. Phys. Rev. D 86, 104050 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Q. & Veitch, J. Rapid premerger localization of binary neutron stars in third-generation gravitational-wave detectors. Astrophys. J. Lett. 958, L43 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Berti, E. & Klein, A. Mixing of spherical and spheroidal modes in perturbed Kerr black holes. Phys. Rev. D 90, 064012 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Finn, L. S. Detection, measurement and gravitational radiation. Phys. Rev. D 46, 5236–5249 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Loredo, T. J. & Wolpert, R. L. Bayesian inference: more than Bayes’s theorem. Front. Astron. Space Sci. 11, 1326926 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publ. Astron. Soc. Aust. 36, e010 (2019); erratum 37, e036 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Tokdar, S. T. & Kass, R. E. Importance sampling: a review. Wiley Interdiscip. Rev.: Comput. Stat. 2, 54–60 (2010).

    Article 

    Google Scholar