Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Abbott, B. P. et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016); erratum 121, 129902 (2018).
Abbott, R. et al. Tests of general relativity with GWTC-3. Phys. Rev. D 112, 084080 (2025).
Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).
Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).
Abbott, R. et al. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Phys. Rev. X 13, 011048 (2023).
Isi, M., Giesler, M., Farr, W. M., Scheel, M. A. & Teukolsky, S. A. Testing the no-hair theorem with GW150914. Phys. Rev. Lett. 123, 111102 (2019).
Isi, M., Farr, W. M., Giesler, M., Scheel, M. A. & Teukolsky, S. A. Testing the black-hole area law with GW150914. Phys. Rev. Lett. 127, 011103 (2021).
Cardoso, V., Franzin, E. & Pani, P. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116, 171101 (2016) ; erratum 117, 089902 (2016).
Teukolsky, S. A. Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973).
Berti, E., Cardoso, J., Cardoso, V. & Cavaglia, M. Matched-filtering and parameter estimation of ringdown waveforms. Phys. Rev. D 76, 104044 (2007).
Dreyer, O. et al. Black hole spectroscopy: testing general relativity through gravitational wave observations. Class. Quantum Grav. 21, 787–804 (2004).
Christensen, N. & Meyer, R. Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis. Phys. Rev. D 58, 082001 (1998).
Sharma, S. Markov chain Monte Carlo methods for Bayesian data analysis in astronomy. Ann. Rev. Astron. Astrophys. 55, 213–259 (2017).
Skilling, J. Nested sampling. AIP Conf. Proc. 735, 395 (2004).
Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).
Abac, A. et al. The science of the Einstein Telescope. Preprint at http://arxiv.org/abs/2503.12263 (2025).
Hu, Q. & Veitch, J. Costs of Bayesian parameter estimation in third-generation gravitational wave detectors: an assessment of current acceleration methods. Phys. Rev. D 112, 084039 (2025).
Reitze, D. et al. Cosmic Explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 035 (2019).
Reitze, D. et al. The US program in ground-based gravitational wave science: contribution from the LIGO laboratory. Bull. Am. Astron. Soc. 51, 141 (2019).
Punturo, M. et al. The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Grav. 27, 194002 (2010).
Hild, S. et al. Sensitivity studies for third-generation gravitational wave observatories. Class. Quantum Grav. 28, 094013 (2011).
Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at http://arxiv.org/abs/1702.00786 (2017).
Hu, W.-R. & Wu, Y.-L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl Sci. Rev. 4, 685–686 (2017).
Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Grav. 33, 035010 (2016).
Bhagwat, S., Pacilio, C., Barausse, E. & Pani, P. Landscape of massive black-hole spectroscopy with LISA and the Einstein Telescope. Phys. Rev. D 105, 124063 (2022).
Bhagwat, S., Pacilio, C., Pani, P. & Mapelli, M. Landscape of stellar-mass black-hole spectroscopy with third-generation gravitational-wave detectors. Phys. Rev. D 108, 043019 (2023).
Pitte, C., Baghi, Q., Besançon, M. & Petiteau, A. Exploring tests of the no-hair theorem with LISA. Phys. Rev. D 110, 104003 (2024).
Berti, E., Cardoso, V. & Starinets, A. O. Quasinormal modes of black holes and black branes. Class. Quantum Grav. 26, 163001 (2009).
Bhagwat, S., Forteza, X. J., Pani, P. & Ferrari, V. Ringdown overtones, black hole spectroscopy, and no-hair theorem tests. Phys. Rev. D 101, 044033 (2020).
Jaranowski, P., Krolak, A. & Schutz, B. F. Data analysis of gravitational-wave signals from spinning neutron stars. 1. The signal and its detection. Phys. Rev. D 58, 063001 (1998).
Wang, H.-T., Yim, G., Chen, X. & Shao, L. Gravitational wave ringdown analysis using the F-statistic. Astrophys. J. 974, 230 (2024).
Wang, H.-T., Wang, Z., Dong, Y., Yim, G. & Shao, L. Reanalyzing the ringdown signal of GW150914 using the F-statistic method. Phys. Rev. D 111, 064037 (2025).
Prix, R. Bayesian QNM search on GW150914. LIGO Document T1500618-v4 (LIGO, 2016); https://dcc.ligo.org/LIGO-T1500618/public
Isi, M. & Farr, W. M. Analyzing black-hole ringdowns. Preprint at http://arxiv.org/abs/2107.05609 (2021).
Prix, R. & Krishnan, B. Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics. Class. Quantum Grav. 26, 204013 (2009).
Ashok, A., Covas, P. B., Prix, R. & Papa, M. A. Bayesian F-statistic-based parameter estimation of continuous gravitational waves from known pulsars. Phys. Rev. D 109, 104002 (2024).
Gabbard, H., Messenger, C., Heng, I. S., Tonolini, F. & Murray, R. Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. Nat. Phys. 18, 112–117 (2022).
Dax, M. et al. Real-time gravitational wave science with neural posterior estimation. Phys. Rev. Lett. 127, 241103 (2021).
Dax, M. et al. Neural importance sampling for rapid and reliable gravitational-wave inference. Phys. Rev. Lett. 130, 171403 (2023).
Pacilio, C., Bhagwat, S. & Cotesta, R. Simulation-based inference of black hole ringdowns in the time domain. Phys. Rev. D 110, 083010 (2024).
Robert, C. P. & Casella, G. Monte Carlo Statistical Methods (Springer, 2004).
Boyle, M. et al. The SXS Collaboration catalog of binary black hole simulations. Class. Quantum Grav. 36, 195006 (2019).
Higson, E., Handley, W., Hobson, M. & Lasenby, A. Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. Stat. Comput. 29, 891 (2019).
Ashton, G. et al. Bilby: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).
Giesler, M., Isi, M., Scheel, M. A. & Teukolsky, S. Black hole ringdown: the importance of overtones. Phys. Rev. X 9, 041060 (2019).
Peyré, G. & Cuturi, M. Computational optimal transport: with applications to data science. Found. Trends Mach. Learn. 11, 355–607 (2019).
Wang, Y., Shang, Y. & Babak, S. EMRI data analysis with a phenomenological waveform. Phys. Rev. D 86, 104050 (2012).
Hu, Q. & Veitch, J. Rapid premerger localization of binary neutron stars in third-generation gravitational-wave detectors. Astrophys. J. Lett. 958, L43 (2023).
Berti, E. & Klein, A. Mixing of spherical and spheroidal modes in perturbed Kerr black holes. Phys. Rev. D 90, 064012 (2014).
Finn, L. S. Detection, measurement and gravitational radiation. Phys. Rev. D 46, 5236–5249 (1992).
Loredo, T. J. & Wolpert, R. L. Bayesian inference: more than Bayes’s theorem. Front. Astron. Space Sci. 11, 1326926 (2024).
Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publ. Astron. Soc. Aust. 36, e010 (2019); erratum 37, e036 (2020).
Tokdar, S. T. & Kass, R. E. Importance sampling: a review. Wiley Interdiscip. Rev.: Comput. Stat. 2, 54–60 (2010).