Skyrme, T. H. R. A non-linear field theory. Proc. R. Soc. A 260, 127–138 (1961).
Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).
Duzgun, A. & Nisoli, C. Skyrmion spin ice in liquid crystals. Phys. Rev. Lett. 126, 047801 (2021).
Al Khawaja, U. & Stoof, H. Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918–920 (2001).
Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).
Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).
Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).
Wang, A. A. et al. Topological protection of optical skyrmions through complex media. Light: Sci. Appl. 13, 314 (2024).
Wang, R. et al. Observation of resilient propagation and free-space skyrmions in toroidal electromagnetic pulses. Appl. Phys. Rev. 11, 031411 (2024).
He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light: Sci. Appl. 11, 205 (2022).
Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18, 15–25 (2024).
Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).
Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).
Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).
Kuratsuji, H. & Tsuchida, S. Evolution of the Stokes parameters, polarization singularities, and optical skyrmion. Phys. Rev. A 103, 023514 (2021).
Shen, Y., Martínez, E. C. & Rosales-Guzmán, C. Generation of optical skyrmions with tunable topological textures. ACS Photonics 9, 296–303 (2022).
Lin, W., Ota, Y., Arakawa, Y. & Iwamoto, S. On-chip optical skyrmionic beam generators. Optica 11, 1588–1594 (2024).
Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).
Karnieli, A., Tsesses, S., Bartal, G. & Arie, A. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun. 12, 1092 (2021).
Shen, Y. Topological bimeronic beams. Opt. Lett. 46, 3737–3740 (2021).
Zhang, Q. et al. Optical topological lattices of Bloch-type skyrmion and meron topologies. Photonics Res. 10, 947–957 (2022).
Marco, D., Herrera, I., Brasselet, S. & Alonso, M. A. Propagation-invariant optical meron lattices. ACS Photonics 11, 2397–2405 (2024).
Sugic, D. et al. Particle-like topologies in light. Nat. Commun. 12, 6785 (2021).
Ehrmanntraut, D. et al. Optical second-order skyrmionic hopfion. Optica 10, 725–731 (2023).
Shen, Y. et al. Topological transformation and free-space transport of photonic hopfions. Adv. Photonics 5, 015001 (2023).
Kerridge-Johns, W. R., Rao, A. S. & Omatsu, T. Optical skyrmion laser using a wedged output coupler. Optica 11, 769–775 (2024).
He, T. et al. Optical skyrmions from metafibers with subwavelength features. Nat. Commun. 15, 10141 (2024).
Shen, Y. et al. Topologically controlled multiskyrmions in photonic gradient-index lenses. Phys. Rev. Appl. 21, 024025 (2024).
Mata-Cervera, N. et al. Tailoring propagation-invariant topology of optical skyrmions with dielectric metasurfaces. Nanophotonics https://doi.org/10.1515/nanoph-2024-0736 (2025).
Hakobyan, V., Shen, Y. & Brasselet, E. Unitary spin-orbit optical-skyrmionic wave plates. Phys. Rev. Appl. 22, 054038 (2024).
Hakobyan, V. & Brasselet, E. Q-plates: from optical vortices to optical skyrmions. Phys. Rev. Lett. 134, 083802 (2025).
Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics 18, 258–266 (2024).
Luo, X. et al. Non-Hermitian control of confined optical skyrmions in microcavities formed by photonic spin–orbit coupling. Photonics Res. 11, 610–621 (2023).
Zhou, X., Zhai, L. & Liu, J. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies. Photonics Insights 1, R07 (2023).
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).
Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021).
Yang, J. et al. Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources. Light: Sci. Appl. 13, 33 (2024).
Li, F. et al. Tunable open-access microcavities for solid-state quantum photonics and polaritonics. Adv. Quantum Technol. 2, 1900060 (2019).
Whittaker, C. et al. Effect of photonic spin-orbit coupling on the topological edge modes of a Su-Schrieffer-Heeger chain. Phys. Rev. B 99, 081402 (2019).
Winger, M. et al. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).
Dufferwiel, S. et al. Spin textures of exciton-polaritons in a tunable microcavity with large TE-TM splitting. Phys. Rev. Lett. 115, 246401 (2015).
Lin, W., Ota, Y., Arakawa, Y. & Iwamoto, S. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res. 3, 023055 (2021).
Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).
Petrovic, A. P., Psaroudaki, C., Fischer, P., Garst, M. & Panagopoulos, C. Colloquium: quantum properties and functionalities of magnetic skyrmions. Preprint at arxiv.org/abs/2410.11427 (2024).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).
Chen, J., Forbes, A. & Qiu, C.-W. More than just a name? From magnetic to optical skyrmions and the topology of light. Light Sci. Appl. 14, 28 (2025).
Zheng, F. et al. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys. Rev. Lett. 119, 197205 (2017).
Song, C. et al. Field-tuned spin excitation spectrum of kπ skyrmion. New J. Phys. 21, 083006 (2019).
Reindl, M. et al. Highly indistinguishable single photons from incoherently excited quantum dots. Phys. Rev. B 100, 155420 (2019).
Allen, L., Beijersbergen, M. W., Spreeuw, R. & Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).
Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).
Solnyshkov, D. & Malpuech, G. Chirality in photonic systems. Comptes Rendus Phys. 17, 920–933 (2016).
Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Ma, J. et al. Nanophotonic quantum skyrmions enabled by semiconductor cavity quantum electrodynamics. figshare https://doi.org/10.6084/m9.figshare.29162057 (2025).