• Skyrme, T. H. R. A non-linear field theory. Proc. R. Soc. A 260, 127–138 (1961).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    Article 
    MathSciNet 

    Google Scholar
     

  • Duzgun, A. & Nisoli, C. Skyrmion spin ice in liquid crystals. Phys. Rev. Lett. 126, 047801 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Al Khawaja, U. & Stoof, H. Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918–920 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article 

    Google Scholar
     

  • Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).

    Article 

    Google Scholar
     

  • Wang, A. A. et al. Topological protection of optical skyrmions through complex media. Light: Sci. Appl. 13, 314 (2024).

    Article 

    Google Scholar
     

  • Wang, R. et al. Observation of resilient propagation and free-space skyrmions in toroidal electromagnetic pulses. Appl. Phys. Rev. 11, 031411 (2024).

  • He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light: Sci. Appl. 11, 205 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18, 15–25 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Article 

    Google Scholar
     

  • Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kuratsuji, H. & Tsuchida, S. Evolution of the Stokes parameters, polarization singularities, and optical skyrmion. Phys. Rev. A 103, 023514 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Shen, Y., Martínez, E. C. & Rosales-Guzmán, C. Generation of optical skyrmions with tunable topological textures. ACS Photonics 9, 296–303 (2022).

    Article 

    Google Scholar
     

  • Lin, W., Ota, Y., Arakawa, Y. & Iwamoto, S. On-chip optical skyrmionic beam generators. Optica 11, 1588–1594 (2024).

    Article 

    Google Scholar
     

  • Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Karnieli, A., Tsesses, S., Bartal, G. & Arie, A. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun. 12, 1092 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. Topological bimeronic beams. Opt. Lett. 46, 3737–3740 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Q. et al. Optical topological lattices of Bloch-type skyrmion and meron topologies. Photonics Res. 10, 947–957 (2022).

    Article 

    Google Scholar
     

  • Marco, D., Herrera, I., Brasselet, S. & Alonso, M. A. Propagation-invariant optical meron lattices. ACS Photonics 11, 2397–2405 (2024).

  • Sugic, D. et al. Particle-like topologies in light. Nat. Commun. 12, 6785 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ehrmanntraut, D. et al. Optical second-order skyrmionic hopfion. Optica 10, 725–731 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Topological transformation and free-space transport of photonic hopfions. Adv. Photonics 5, 015001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kerridge-Johns, W. R., Rao, A. S. & Omatsu, T. Optical skyrmion laser using a wedged output coupler. Optica 11, 769–775 (2024).

    Article 
    ADS 

    Google Scholar
     

  • He, T. et al. Optical skyrmions from metafibers with subwavelength features. Nat. Commun. 15, 10141 (2024).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Topologically controlled multiskyrmions in photonic gradient-index lenses. Phys. Rev. Appl. 21, 024025 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Mata-Cervera, N. et al. Tailoring propagation-invariant topology of optical skyrmions with dielectric metasurfaces. Nanophotonics https://doi.org/10.1515/nanoph-2024-0736 (2025).

  • Hakobyan, V., Shen, Y. & Brasselet, E. Unitary spin-orbit optical-skyrmionic wave plates. Phys. Rev. Appl. 22, 054038 (2024).

    Article 

    Google Scholar
     

  • Hakobyan, V. & Brasselet, E. Q-plates: from optical vortices to optical skyrmions. Phys. Rev. Lett. 134, 083802 (2025).

    Article 

    Google Scholar
     

  • Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics 18, 258–266 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Luo, X. et al. Non-Hermitian control of confined optical skyrmions in microcavities formed by photonic spin–orbit coupling. Photonics Res. 11, 610–621 (2023).

    Article 

    Google Scholar
     

  • Zhou, X., Zhai, L. & Liu, J. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies. Photonics Insights 1, R07 (2023).

    Article 

    Google Scholar
     

  • Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yang, J. et al. Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources. Light: Sci. Appl. 13, 33 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Li, F. et al. Tunable open-access microcavities for solid-state quantum photonics and polaritonics. Adv. Quantum Technol. 2, 1900060 (2019).

    Article 

    Google Scholar
     

  • Whittaker, C. et al. Effect of photonic spin-orbit coupling on the topological edge modes of a Su-Schrieffer-Heeger chain. Phys. Rev. B 99, 081402 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Winger, M. et al. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Dufferwiel, S. et al. Spin textures of exciton-polaritons in a tunable microcavity with large TE-TM splitting. Phys. Rev. Lett. 115, 246401 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lin, W., Ota, Y., Arakawa, Y. & Iwamoto, S. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res. 3, 023055 (2021).

    Article 

    Google Scholar
     

  • Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Petrovic, A. P., Psaroudaki, C., Fischer, P., Garst, M. & Panagopoulos, C. Colloquium: quantum properties and functionalities of magnetic skyrmions. Preprint at arxiv.org/abs/2410.11427 (2024).

  • Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, J., Forbes, A. & Qiu, C.-W. More than just a name? From magnetic to optical skyrmions and the topology of light. Light Sci. Appl. 14, 28 (2025).

    Article 

    Google Scholar
     

  • Zheng, F. et al. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys. Rev. Lett. 119, 197205 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Song, C. et al. Field-tuned spin excitation spectrum of kπ skyrmion. New J. Phys. 21, 083006 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Reindl, M. et al. Highly indistinguishable single photons from incoherently excited quantum dots. Phys. Rev. B 100, 155420 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Allen, L., Beijersbergen, M. W., Spreeuw, R. & Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).

    Article 

    Google Scholar
     

  • Solnyshkov, D. & Malpuech, G. Chirality in photonic systems. Comptes Rendus Phys. 17, 920–933 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J. et al. Nanophotonic quantum skyrmions enabled by semiconductor cavity quantum electrodynamics. figshare https://doi.org/10.6084/m9.figshare.29162057 (2025).