• Massey, R. et al. The Shear Testing Programme 2: factors affecting high-precision weak-lensing analyses. Mon. Not. R. Astron. Soc. 376, 13–38 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Oguri, M. et al. Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data. Publ. Astron. Soc. Jpn 70, S26 (2017).

    Article 

    Google Scholar
     

  • Martinet, N. et al. KiDS-450: cosmological constraints from weak-lensing peak statistics—II: inference from shear peaks using N-body simulations. Mon. Not. R. Astron. Soc. 474, 712–730 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Scoville, N. et al. COSMOS: Hubble Space Telescope observations. Astrophys. J. Suppl. Ser. 172, 38–45 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Finoguenov, A. et al. The XMM-Newton wide-field survey in the COSMOS field: statistical properties of clusters of galaxies. Astrophys. J. 172, 182–195 (2007).

    Article 

    Google Scholar
     

  • Massey, R. et al. Dark matter maps reveal cosmic scaffolding. Nature 445, 286–290 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Laigle, C. et al. The cosmos2015 catalog: exploring the 1 < z < 6 universe with half a million galaxies. Astrophys. J. Suppl. Ser. 224, 24 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum data and source catalog release. Astron. Astrophys. 602, A1 (2017).

    Article 

    Google Scholar
     

  • Liu, D. et al. Automated mining of the alma archive in the cosmos field (A3COSMOS). I. Robust ALMA continuum photometry catalogs and stellar mass and star formation properties for ~700 galaxies at z = 0.5–6. Astrophys. J. Suppl. Ser. 244, 40 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Casey, C. M. et al. COSMOS-Web: an overview of the JWST Cosmic Origins Survey. Astrophys. J. 954, 31 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Franco, M. et al. COSMOS-Web: comprehensive data reduction for wide-area JWST NIRCam imaging. Preprint at https://arxiv.org/abs/2506.03256 (2025).

  • Shuntov, M. et al. COSMOS2025: the COSMOS-Web galaxy catalog of photometry, morphology, redshifts, and physical parameters from JWST, HST, and ground-based imaging. Preprint at https://arxiv.org/abs/2506.03243 (2025).

  • Harish, S. et al. COSMOS-Web: MIRI data reduction and number counts at 7.7 μm Using JWST. Astrophys. J. 992, 45 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Kaiser, N. & Squires, G. Mapping the dark matter with weak gravitational lensing. Astrophys. J. 404, 441 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Seitz, C. & Schneider, P. Steps towards nonlinear cluster inversion through gravitational distortions II. Generalization of the Kaiser and Squires method. Astron. Astrophys. 297, 287 (1995).

    ADS 

    Google Scholar
     

  • Bartelmann, M. & Schneider, P. Weak gravitational lensing. Phys. Rep. 340, 291–472 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Hamana, T., Shirasaki, M. & Lin, Y.-T. Weak-lensing clusters from hsc survey first-year data: mitigating the dilution effect of foreground and cluster-member galaxies. Publ. Astron. Soc. Jpn 72, 78 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jeffrey, N. et al. Dark Energy Survey Year 3 results: curved-sky weak lensing mass map reconstruction. Mon. Not. R. Astron. Soc. 505, 4626–4645 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wright, A. H. et al. The fifth data release of the Kilo Degree Survey: multi-epoch optical/NIR imaging covering wide and legacy-calibration fields. Astron. Astrophys. 686, A170 (2024).

    Article 

    Google Scholar
     

  • Jarvis, M. et al. The DES Science Verification weak lensing shear catalogues. Mon. Not. R. Astron. Soc. 460, 2245–2281 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Schrabback, T. et al. Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS. Astron. Astrophys. 516, A63 (2010).

    Article 

    Google Scholar
     

  • Amara, A. et al. The COSMOS density field: a reconstruction using both weak lensing and galaxy distributions. Mon. Not. R. Astron. Soc. 424, 553–563 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ilbert, O. et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. Astron. Astrophys. 457, 841–856 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Arnouts, S. & Ilbert, O. LePHARE: photometric analysis for redshift estimate. Astrophysics Source Code Library https://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html (2011).

  • Starck, J.-L., Moudden, Y., Abrial, P. & Nguyen, M. Wavelets, ridgelets and curvelets on the sphere. Astron. Astrophys. 446, 1191–1204 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Nightingale, J. W. et al. The cosmos-web lens survey (COWLS) I: discovery of >100 high redshift strong lenses in contiguous jwst imaging. Mon. Not. R. Astron. Soc. 543, 203–222 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Mahler, G. et al. The COSMOS-Web Lens Survey (COWLS) II: Depth, resolution, and NIR coverage from JWST reveals17 spectacular lenses. Mon. Not. R. Astron. Soc. 544, L8–L14 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Hogg, N. B. et al. The COSMOS-Web Lens Survey(COWLS) III: forecasts versus data. Mon. Not. R. Astron. Soc. 544, 782–798 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Schneider, P., Waerbeke, L. & Mellier, Y. B-modes in cosmic shear from source redshift clustering. Astron. Astrophys. 389, 729–741 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Gozaliasl, G. et al. Chandra centres for COSMOS X-ray galaxy groups: differences in stellar properties between central dominant and offset brightest group galaxies. Mon. Not. R. Astron. Soc. 483, 3545–3565 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Weaver, J. R. et al. Cosmos2020: a panchromatic view of the universe to z10 from two complementary catalogs. Astrophys. J. Suppl. Ser. 258, 11 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Capak, P. et al. The first release cosmos optical and near-IR data and catalog. Astrophys. J. Suppl. Ser. 172, 99 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Franco, M. et al. Unveiling the distant Universe: characterizing z ≥ 9 galaxies in the first epoch of COSMOS-Web. Astrophys. J. 973, 23 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.6984365 (2024)

  • Koekemoer, A. M. et al. CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Rhodes, J. D. et al. The stability of the point-spread function of the advanced camera for surveys on the Hubble Space Telescope and implications for weak gravitational lensing. Astrophys. J. Suppl. Ser. 172, 203–218 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Rhodes, J., Refregier, A. & Groth, E. J. Weak lensing measurements: a revisited method and application tohubble space telescope images. Astrophys. J. 536, 79 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Leauthaud, A. et al. Weak gravitational lensing with COSMOS: galaxy selection and shape measurements. Astrophys. J. 172, 219–238 (2007).

  • Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. 117, 393–404 (1996).

    ADS 

    Google Scholar
     

  • Berman, E. & McCleary, J. ShOpt.jl: a Julia package for empirical point spread function characterization of JWST NIRCam data. J. Open Source Softw. 9, 6144 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bertin, E. Automated morphometry with SExtractor and PSFEx. In Astronomical Society of the Pacific Conference Series (eds Evans, I. N. et al.) Vol. 442, 435 (Astronomical Society of the Pacific, 2011).

  • Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Oschmann, J. et al.) Vol. 9143, 91433 (Society of Photo-Optical Instrumentation Engineers, 2014).

  • Harvey, D. et al. Reconciling galaxy cluster shapes, measured by theorists versus observers. Mon. Not. R. Astron. Soc. 500, 2627–2644 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Harvey, D. R. & Massey, R. Weak gravitational lensing measurements of Abell 2744 using JWST and shear measurement algorithm pyRRG-JWST. Mon. Not. R. Astron. Soc. 529, 802–809 (2024).

    Article 
    ADS 

    Google Scholar
     

  • High, F. W., Rhodes, J., Massey, R. & Ellis, R. Pixelation effects in weak lensing. Publ. Astron. Soc. Pac. 119, 1295–1307 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Massey, R. et al. Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation). Mon. Not. R. Astron. Soc. 429, 661–678 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Pires, S. et al. FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making. Mon. Not. R. Astron. Soc. 395, 1265–1279 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Pires, S. et al. Euclid: reconstruction of weak-lensing mass maps for non-Gaussianity studies. Astron. Astrophys. 638, A141 (2020).

    Article 

    Google Scholar
     

  • Starck, J.-L., Pires, S. & Réfrégier, A. Weak lensing mass reconstruction using wavelets. Astron. Astrophys. 451, 1139–1150 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Article 
    MathSciNet 

    Google Scholar
     

  • Aoyama, S. D., Osato, K. & Shirasaki, M. Denoising weak lensing mass maps with diffusion model: systematic comparison with generative adversarial network. Preprint at https://arxiv.org/abs/2505.00345 (2025).

  • Cha, S. et al. Weak-lensing mass reconstruction of galaxy clusters with a convolutional neural network. II. Application to next-generation wide-field surveys. Astrophys. J. 981, 52 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Leroy, G., Pires, S., Pratt, G. W. & Giocoli, C. Fast multi-scale galaxy cluster detection with weak lensing: towards a mass-selected sample. Astron. Astrophys. 678, A125 (2023).

    Article 
    ADS 

    Google Scholar