• Trinkaus, E. Early modern humans. Annu. Rev. Anthropol. 34, 207–230 (2005).

    Article 

    Google Scholar
     

  • Petraglia, M. D., Haslam, M., Fuller, D. Q., Boivin, N. & Clarkson, C. Out of Africa: new hypotheses and evidence for the dispersal of Homo sapiens along the Indian Ocean rim. Ann. Hum. Biol. 37, 288–311 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. The earliest unequivocally modern humans in southern China. Nature 526, 696–699 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, Z. Y. et al. Late Pleistocene archaic human crania from Xuchang, China. Science 355, 969–972 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Martinón-Torres, M. et al. Homo sapiens in the Eastern Asian Late Pleistocene. Curr. Anthropol. 58, S000 (2017).

    Article 

    Google Scholar
     

  • Zhang, D. J. et al. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science 370, 584–587 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ni, X. J. et al. Massive cranium from Harbin in northeastern China establishes a new Middle Pleistocene human lineage. Innovation 2, 100130 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvati, K. & Reyes-Centeno, H. Evolution of Homo in the Middle and Late Pleistocene. J. Hum. Evol. 173, 103279 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bae, C. J. et al. Moving away from “the Muddle in the Middle” toward solving the Chibanian puzzle. Evol. Anthropol. 33, e22011 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Bae, C. J. & Wu, X. J. Making sense of eastern Asian Late Quaternary hominin variability. Nat. Commun. 15, 9479 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Fu, Q. M. et al. Denisovan mitochondrial DNA from dental calculus of the >146,000-year-old Harbin cranium. Cell 188, 3919–3926 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Q. M. et al. The proteome of the late Middle Pleistocene Harbin individual. Science 389, 704–707 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • McBrearty, S. & Brooks, A. S. The revolution that wasn’t: a new interpretation of the origin of modern human behaviour. J. Hum. Evol. 39, 453–563 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henshilwood, C. S. et al. A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science 334, 219–222 (2011).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wadley, L., Hodgskiss, T. & Grant, M. Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa. Proc. Natl. Acad. Sci. USA. 106, 9590–9594 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hoffmann, D. L., Angelucci, D. E., Villaverde, V., Zapata, J. & Zilhão, J. Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago. Sci. Adv. 4, eaar5255 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zaidner, Y. et al. Middle Pleistocene Homo behaviour and culture at 140,000 to 120,000 years ago and interactions with Homo sapiens. Science 372, 1429–1433 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Scerri, E. M. L. & Will, M. The revolution that still isn’t: the origins of behavioural complexity in Homo sapiens. J. Hum. Evol. 179, 103358 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Schick, K. D. & Zhuan, D. Early Paleolithic of China and eastern Asia. Evol. Anthropol. 2, 22–35 (1993).

    Article 

    Google Scholar
     

  • Gao, X. & Norton, C. J. A critique of the Chinese ‘Middle Palaeolithic’. Antiquity 76, 397–412 (2002).

    Article 

    Google Scholar
     

  • Braun, D. R., Norton, C. J. & Harris, J. W. K. in Asian Paleoanthropology: From Africa to China and Beyond (eds Norton, C. J. & Braun, D. R.) 41–48 (Springer, Verlach, (2010).

  • Gao, X. Paleolithic cultures in China: uniqueness and divergence. Curr. Anthropol. 54, 358–370 (2013).

    Article 

    Google Scholar
     

  • Li, F. Fact or fiction: the Middle Palaeolithic in China. Antiquity 88, 1303–1309 (2014).

    Article 

    Google Scholar
     

  • Seong, C. & Bae, C. J. The eastern Asian ‘Middle Palaeolithic’ revisited: a view from Korea. Antiquity 90, 1151–1165 (2016).

    Article 

    Google Scholar
     

  • Hu, Y. et al. Late Middle Pleistocene Levallois stone-tool technology in southwest China. Nature 565, 82–85 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, H., Li, Z. Y., Gao, X., Kuman, K. & Sumner, A. Technological behaviour of the early Late Pleistocene archaic humans at Lingjing (Xuchang, China). Archaeol. Anthropol. Sci. 11, 3477–3490 (2019).

    Article 

    Google Scholar
     

  • Lin, N. R. et al. Lithic miniaturization and hafted tools in early Late Pleistocene Salawusu, North China. J. Archaeol. Sci. Rep. 48, 103831 (2023).

    ADS 

    Google Scholar
     

  • Ruan, Q. J. et al. Quina lithic technology indicates diverse Late Pleistocene human dynamics in East Asia. Proc. Natl. Acad. Sci. USA 122, e2418029122 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wintle, G. & Murray, A. S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 41, 369–391 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. L., Lu, Y. C. & Wintle, A. G. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quat. Geochronol. 1, 89–100 (2006).

    Article 

    Google Scholar
     

  • Kang, S. G., Lu, Y. C. & Wang, X. L. Closely-spaced recuperated OSL dating of the last interglacial paleosol in the southeastern margin of the Chinese Loess Plateau. Quat. Geochronol. 6, 480–490 (2011).

    Article 

    Google Scholar
     

  • Buylaert, J.-P. et al. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments: Feldspar luminescence dating of Middle and Late Pleistocene sediments. Boreas 41, 435–451 (2012).

    Article 

    Google Scholar
     

  • Buylaert, J.-P., Murray, A. S., Thomsen, K. J. & Jain, M. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat. Meas. 44, 560–565 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Keeley, L. H. Hafting and retooling: effects on the archaeological record. Am. Antiquity 47, 798–809 (1982).

    Article 

    Google Scholar
     

  • Rots, V. in Multidisciplinary Approaches to the Study of Stone Age Weaponry (eds Iovita, R. & Sano, K.) 167–185 (Springer, 2016).

  • Tomasso, S. & Rots, V. What is the use of shaping a tang? Tool use and hafting of tanged tools in the Aterian of northern Africa. Archaeol. Anthropol. Sci. 10, 1389–1417 (2018).

    Article 

    Google Scholar
     

  • Delpiano, D., Gravina, B. & Peresani, M. Back(s) to basics: the concept of backing in stone tool technologies for tracing hominins’ technical innovations. Evol. Anthropol. 33, e22045 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rots, V. Prehension and Hafting Traces on Flint Tools: A Methodology (Leuven University Press, 2010).

  • Spry, C., Kurpiel, R., Foley, E. & Penzo-Kajewski, P. Revisiting the “quartz problem” in lithic studies: a review and new, open-access, experimental dataset. Lithic Technol. 47, 171–181 (2022).

    Article 

    Google Scholar
     

  • Ma, D. D. et al. Earliest prepared core technology in Eurasia from Nihewan (China): Implications for early human abilities and dispersals in East Asia. Proc. Natl. Acad. Sci. USA. 121, e2313123121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S. X. et al. Technological innovations at the onset of the Mid-Pleistocene Climate Transition in high-latitude East Asia. Natl. Sci. Rev. 8, nwaa053 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hou, Y. M. et al. Mid-Pleistocene Acheulean-like stone technology of the Bose Basin, South China. Science 287, 1622–1626 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. The temporal-spatial evolution of handaxe technology in China: Recent progress and future directions. Sci. Bull. 69, 2161–2165 (2024).

    Article 

    Google Scholar
     

  • Li, H. et al. The Middle Pleistocene handaxe site of Shuangshu in the Danjiangkou Reservoir Region, Central China. J. Archaeol. Sci. 52, 391–409 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pei, S. W. et al. Middle Pleistocene hominin occupation in the Danjiangkou Reservoir Region, Central China: Studies of formation processes and stone technology of Maling 2A site. J. Archaeol. Sci. 53, 391–407 (2015).

    Article 

    Google Scholar
     

  • Liu, K. et al. Stratigraphy and chronology of two newly discovered Early Pleistocene Palaeolithic sites in the Hanjiang River Valley, Central China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 605, 111229 (2022).

    Article 

    Google Scholar
     

  • Gao, X. A study of flaking technology at Zhoukoudian Locality 15. Acta Anthropol. Sin. 19, 199–215 (2000).


    Google Scholar
     

  • Gao, X. A study of stone tool typology and retouch technology at Zhoukoudian Locality 15. Acta Anthropol. Sin. 20, 1–18 (2001).


    Google Scholar
     

  • Ren, J. C., Li, F., Chen, F. Y., Olsen, J. W. & Gao, X. Lithic technology at Banjingzi Locality 1: implications for the Middle Paleolithic in northern China. J. Archaeol. Sci. Rep. 65, 105193 (2025).


    Google Scholar
     

  • Liu, Y., Hou, Y. M. & Bao, L. The lithic industry and its cultural significance of the Wulanmulun site in Ordos region. Acta Archaeol. Sin. 4, 423–440 (2022).


    Google Scholar
     

  • Chen, H. et al. Hafting wear on quartzite tools: an experimental case from the Wulanmulun Site, Inner Mongolia of North China. Quatern. Int. 427, 184–192 (2017).

    Article 

    Google Scholar
     

  • Li, H. et al. Continuous technological and behavioural development of Late Pleistocene hominins in central South China: multidisciplinary analysis at Sandinggai. Quat. Sci. Rev. 298, 107850 (2022).

    Article 

    Google Scholar
     

  • Hu, Y., Ruan, Q., Liu, J., Marwick, B. & Li, B. Luminescence chronology and lithic technology of Tianhuadong Cave, an early Upper Pleistocene Paleolithic site in southwest China. Quat. Res. 94, 1–16 (2020).

    Article 

    Google Scholar
     

  • Doyon, L., Li, Z. Y., Li, H. & d’Errico, F. Discovery of circa 115,000-year-old bone retouchers at Lingjing, Henan, China. PLoS ONE 13, e0194318 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyon, L., Li, H., Li, Z., Wang, H. & Zhao, Q. Further evidence of organic soft hammer percussion and pressure retouch from Lingjing (Xuchang, Henan, China). Lithic Technol. 44, 100–117 (2019).

    Article 

    Google Scholar
     

  • Liu, J. H. et al. 300,000-year-old wooden tools from Gantangqing, southwest China. Science 389, 78–83 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, Z. Y. et al. Engraved bones from the archaic hominin site of Lingjing, Henan Province. Antiquity 93, 886–900 (2019).

    Article 

    Google Scholar
     

  • Wu, X. J. et al. Evolution of cranial capacity revisited: a view from the late Middle Pleistocene cranium from Xujiayao, China. J. Hum. Evol. 163, 103119 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bae, C. J., Li, F., Cheng, L. L., Wang, W. & Hong, H. L. Hominin distribution and density patterns in Pleistocene China: climatic influences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 118–131 (2018).

    Article 

    Google Scholar
     

  • Liu, W. et al. Late Middle Pleistocene hominin teeth from Panxian Dadong, South China. J. Hum. Evol. 64, 337–355 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    ADS 

    Google Scholar
     

  • Hao, Q. et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393–396 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science 360, 877–881 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • D’Errico, F. & Banks, W. E. Identifying mechanisms behind Middle Paleolithic and Middle Stone Age cultural trajectories. Curr. Anthropol. 54, S371–S387 (2013).

    Article 

    Google Scholar
     

  • Inizan, L., Reduron-Ballinger, M., Roche, H. & Tixier, J.Technology and Terminology of Knapped Stone (translated by J. Féblot-Augustins) (Cercle de Recherches et d’Etudes Préhistoriques, 1999).

  • Pelegrin, J. in Stone Knapping: The Necessary Conditions for a Uniquely Hominin Behaviour (eds Roux, V. & Bril, B.) 23–33 (McDonald Institute for Archaeological Research, 2005).

  • Soressi, M. & Geneste, J.-M. The history and efficacy of the chaîne opératoire approach to lithic analysis: Studying techniques to reveal past societies in an evolutionary perspective. PaleoAnthropology 334, 350 (2011).


    Google Scholar
     

  • Scerri, E. L., Gravina, B., Blinkhorn, J. & Delagnes, A. Can lithic attribute analyses identify discrete reduction trajectories? A quantitative study using refitted lithic sets. J. Archaeol. Method Th. 23, 669–691 (2016).

    Article 

    Google Scholar
     

  • Ollé, A. & Vergès, J. M. The use of sequential experiments and SEM in documenting stone tool microwear. J. Archaeol. Sci. 48, 60–72 (2014).

    Article 

    Google Scholar
     

  • Fernández-Marchena, J. L. et al. Rainbow in the dark. The identification of diagnostic projectile impact features on rock crystal. J. Archaeol. Sci. Rep. 31, 102315 (2020).


    Google Scholar
     

  • Fernández-Marchena, J. L. & Ollé, A. Microscopic analysis of technical and functional traces as a method for the use-wear analysis of rock crystal tools. Quatern. Int. 424, 171–190 (2016).

    Article 

    Google Scholar
     

  • Pedergnana, A. & Ollé, A. Monitoring and interpreting the use-wear formation processes on quartzite flakes through sequential experiments. Quatern. Int. 427, 35–65 (2017).

    Article 

    Google Scholar
     

  • Borel, A., Ollé, A., Vergès, J. M. & Sala, R. Scanning electron and optical light microscopy: two 1208 complementary approaches for the understanding and interpretation of usewear and residues on stone tools. J. Archaeol. Sci. 48, 46–59 (2014).

    Article 

    Google Scholar
     

  • Fernández-Marchena, J. L. et al. Traceological analysis of a singular artefact: the rock crystal point from O Achadizo (Boiro, A Coruña, Galicia). J. Lithic Stud. 3, 253–271 (2016).

    Article 

    Google Scholar
     

  • Martín-Viveros, J. I. & Ollé, A. Use-wear and residue mapping on experimental chert tools. A multi-1213 scalar approach combining digital 3D, optical, and scanning electron microscopy. J. Archaeol. Sci. Rep. 30, 102236 (2020).


    Google Scholar
     

  • Ollé, A. et al. Microwear features on vein quartz, rock crystal and quartzite: a study combining optical light and scanning electron microscopy. Quatern. Int. 424, 154–170 (2016).

    Article 

    Google Scholar
     

  • Vergès, J. M. & Ollé, A. Technical microwear and residues in identifying bipolar knapping on an anvil: experimental data. J. Archaeol. Sci. 38, 1016–1025 (2011).

    Article 

    Google Scholar
     

  • Pedergnana, A., Asryan, L., Fernández-Marchena, J. L. & Ollé, A. Modern contaminants affecting microscopic residue analysis on stone tools: a word of caution. Micron 86, 1–21 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taipale, N. & Rots, V. Breakage, scarring, scratches and explosions: understanding impact trace formation on quartz. Archaeol. Anthropol. Sci. 11, 3013–3039 (2019).

    Article 

    Google Scholar
     

  • Knutsson, K. Patterns of tools use: Scanning electron microscopy of experimental quartz tools. In Aun, 10. (Societas Archaeologica Upsalensis, Uppsala, 1988).

  • Pedergnana, A., García-Antón, M. D. & Ollé, A. Structural study of two quartzite varieties from the Utrillas facies formation (Olmos de Atapuerca, Burgos, Spain): from a petrographic characterisation to a functional analysis design. Quatern. Int. 433, 163–178 (2017).

    Article 

    Google Scholar
     

  • Bustos-Pérez, G. & Ollé, A. The quantification of surface abrasion on flint stone tools. Archaeometry 66, 247–265 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Galland, A., Clemente-Conte, I., Boisserie, J.-R. & Delagnes, A. How depositional environments 1233 impact the microwear preservation of quartz artefacts: insights from the Oldowan of the Shungura Formation (Ethiopia). https://doi.org/10.31233/OSF.IO/9K8P3 (2024).

  • Ryan, W. B. F. et al. Global Multi-Resolution Topography (GMRT) synthesis data set. Geochem. Geophys. Geosyst. 10, Q03014 (2009).

    Article 
    ADS 

    Google Scholar