• Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D: Appl. Phys. 43, 264002 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article 

    Google Scholar
     

  • Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Flebus, B. et al. The 2024 magnonics roadmap. J. Phys.: Condens. Matter 36, 363501 (2024).


    Google Scholar
     

  • Wang, Q., Csaba, G., Verba, R., Chumak, A. V. & Pirro, P. Nanoscale magnonic networks. Phys. Rev. Appl. 21, 040503 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Uchida, M., Onose, Y., Matsui, Y. & Tokura, Y. Real-space observation of helical spin order. Science 311, 359–361 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Onose, Y., Okamura, Y., Seki, S., Ishiwata, S. & Tokura, Y. Observation of magnetic excitations of skyrmion crystal in a helimagnetic insulator Cu2OSeO3. Phys. Rev. Lett. 109, 037603 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Koralek, J. D. et al. Observation of coherent helimagnons and Gilbert damping in an itinerant magnet. Phys. Rev. Lett. 109, 247204 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Schwarze, T. et al. Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets. Nat. Mater. 14, 478–483 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Garst, M., Waizner, J. & Grundler, D. Collective spin excitations of helices and magnetic skyrmions: review and perspectives of magnonics in non-centrosymmetric magnets. J. Phys. D: Appl. Phys. 50, 293002 (2017).

    Article 

    Google Scholar
     

  • Kugler, M. et al. Band structure of helimagnons in MnSi resolved by inelastic neutron scattering. Phys. Rev. Lett. 115, 097203 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Weiler, M. et al. Helimagnon resonances in an intrinsic chiral magnonic crystal. Phys. Rev. Lett. 119, 237204 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Weber, T. et al. Topological magnon band structure of emergent Landau levels in a skyrmion lattice. Science 375, 1025–1030 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shimamoto, Y. et al. Observation of collective resonance modes in a chiral spin soliton lattice with tunable magnon dispersion. Phys. Rev. Lett. 128, 247203 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Okamura, Y. et al. Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat. Commun. 4, 2391 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Nomura, T. et al. Phonon magnetochiral effect. Phys. Rev. Lett. 122, 145901 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ogawa, N. et al. Nonreciprocity of spin waves in the conical helix state. Proc. Natl Acad. Sci. USA 118, e2022927118 (2021).

    Article 

    Google Scholar
     

  • Nomura, T. et al. Nonreciprocal phonon propagation in a metallic chiral magnet. Phys. Rev. Lett. 130, 176301 (2023).

    Article 
    ADS 

    Google Scholar
     

  • del Ser, N., Heinen, L. & Rosch, A. Archimedean screw in driven chiral magnets. SciPost Phys. 11, 009 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Date, M., Okuda, K. & Kadowaki, K. Electron spin resonance in the itinerant-electron helical magnet MnSi. J. Phys. Soc. Jpn. 42, 1555–1561 (1977).

  • Kataoka, M. Spin waves in systems with long period helical spin density waves due to the antisymmetric and symmetric exchange interactions. J. Phys. Soc. Jpn. 56, 3635–3647 (1987).

  • Belitz, D., Kirkpatrick, T. R. & Rosch, A. Theory of helimagnons in itinerant quantum systems. Phys. Rev. B 73, 054431 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Hannon, J. P., Trammell, G. T., Blume, M. & Gibbs, D. X-ray resonance exchange scattering. Phys. Rev. Lett. 61, 1245–1248 (1988).

  • van der Laan, G. Soft X-ray resonant magnetic scattering of magnetic nanostructures. C. R. Phys. 9, 570–584 (2008).

  • Burn, D. M. et al. Mode-resolved detection of magnetization dynamics using X-ray diffractive ferromagnetic resonance. Nano Lett. 20, 345–352 (2019).

  • Burn, D. M. et al. Depth-resolved magnetization dynamics revealed by X-ray reflectometry ferromagnetic resonance. Phys. Rev. Lett. 125, 137201 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ran, K. et al. Axially bound magnetic skyrmions: glueing topological strings across an interface. Nano Lett. 22, 3737–3743 (2022).

  • Blume, M. & Gibbs, D. Polarization dependence of magnetic X-ray scattering. Phys. Rev. B 37, 1779–1789 (1988).

  • Gibbs, D. et al. Polarization and resonant properties of magnetic X-ray scattering in holmium. Phys. Rev. Lett. 61, 1241–1244 (1988).

  • Zhang, S. L., van der Laan, G. & Hesjedal, T. Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft X-ray scattering. Phys. Rev. B 96, 094401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. L., van der Laan, G. & Hesjedal, T. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3. Nat. Commun. 8, 14619 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S., van der Laan, G., Wang, W., Haghighirad, A. & Hesjedal, T. Direct observation of twisted surface skyrmions in bulk crystals. Phys. Rev. Lett. 120, 227202 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Silva, E. F. et al. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. J. Phys. D: Appl. Phys. 50, 185001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ran, K. et al. Creation of a chiral bobber lattice in helimagnet-multilayer heterostructures. Phys. Rev. Lett. 126, 017204 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jin, H. et al. Evolution of emergent monopoles into magnetic skyrmion strings. Nano Lett. 23, 5164–5170 (2023).

  • Lüthi, C. et al. Hybrid magnetization dynamics in Cu2OSeO3/NiFe heterostructures. Appl. Phys. Lett. 122, 012401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hirobe, D., Shiomi, Y., Shimada, Y., Ichiro Ohe, J. & Saitoh, E. Generation of spin currents in the skyrmion phase of a helimagnetic insulator Cu2OSeO3. J. Appl. Phys. 117, 053904 (2015).

  • Tan, W., Jin, H., Fan, R., Ran, K. & Zhang, S. Evidence for giant surface Dzyaloshinskii-Moriya interaction in the chiral magnetic insulator Cu2OSeO3. Phys. Rev. B 109, L220402 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. L. et al. Resonant elastic X-ray scattering from the skyrmion lattice in Cu2OSeO3. Phys. Rev. B 93, 214420 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Smit, J. & Beljers, H. G. Ferromagnetic resonance absorption in BaFe12O10. Philips Res. Rep. 10, 113–130 (1955).

  • Zhang, S. et al. Mode locking between helimagnetism and ferromagnetism. Zenodo https://doi.org/10.5281/zenodo.18184389 (2026).