Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994).
Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).
Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).
Vidmar, L. & Rigol, M. Generalized gibbs ensemble in integrable lattice models. J. Stat. Mech.: Theory Exp. 2016, 064007 (2016).
Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).
Davoudi, Z. et al. Quantum thermodynamics of nonequilibrium processes in lattice gauge theories. Phys. Rev. Lett. 133, 250402 (2024).
Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).
Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).
Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).
von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal long-range order in floquet systems. Phys. Rev. B 94, 085112 (2016).
Zaletel, M. P. et al. Colloquium: Quantum and classical discrete time crystals. Phys. Mod. Phys. 95, 031001 (2023).
Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).
Ponte, P., Papić, Z., Huveneers, F. mc & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).
Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).
Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).
Pal, S., Nishad, N., Mahesh, T. S. & Sreejith, G. J. Temporal Order in Periodically Driven Spins in Star-Shaped Clusters. Phys. Rev. Lett. 120, 180602 (2018).
Rovny, J., Blum, R. L. & Barrett, S. E. Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System. Phys. Rev. Lett. 120, 180603 (2018).
Rovny, J., Blum, R. L. & Barrett, S. E. 31p NMR study of discrete time-crystalline signatures in an ordered crystal of ammonium dihydrogen phosphate. Phys. Rev. B 97, 184301 (2018).
Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Observation of a Space-Time Crystal in a Superfluid Quantum Gas. Phys. Rev. Lett. 121, 185301 (2018).
Autti, S., Eltsov, V. B. & Volovik, G. E. Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal. Phys. Rev. Lett. 120, 215301 (2018).
Randall, J. et al. Many-body–localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).
Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).
Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).
Frey, P. & Rachel, S. Realization of a discrete time crystal on 57 qubits of a quantum computer. Sci. Adv. 8, eabm7652 (2022).
Liu, B. et al. Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms. Nat. Commun. 15, 9730 (2024).
Shinjo, K., Seki, K., Shirakawa, T., Sun, R.-Y. & Yunoki, S. Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer. arXiv preprint arXiv:2403.16718 (2024).
Xiang, L. et al. Long-lived topological time-crystalline order on a quantum processor. Nature Communications 15, 8963 (2024).
Wahl, T. B., Han, B. & Béri, B. Topologically ordered time crystals. Nature Communications 15, 9845 (2024).
Fernandes, L., Tindall, J. & Sels, D. Nonperturbative decay of bipartite discrete time crystals. Phys. Rev. B 111, L100304 (2025).
Kimura, S. et al. Field-Induced Order-Disorder Transition in Antiferromagnetic baco2v2o8 Driven by a Softening of Spinon Excitation. Phys. Rev. Lett. 99, 087602 (2007).
Breunig, O. et al. Spin-\(\frac{1}{2}xxz\) chain system cs2cocl4 in a transverse magnetic field. Phys. Rev. Lett. 111, 187202 (2013).
Toskovic, R. et al. Atomic spin-chain realization of a model for quantum criticality. Nat. Phys. 12, 656–660 (2016).
Li, B., Van Dyke, J. S., Warren, A., Economou, S. E. & Barnes, E. Discrete time crystal in the gradient-field Heisenberg model. Phys. Rev. B 101, 115303 (2020).
Throckmorton, R. E. & Das Sarma, S. Effects of leakage on the realization of a discrete time crystal in a chain of singlet-triplet qubits. Phys. Rev. B 106, 245419 (2022).
Sarkar, S. & Dubi, Y. Time Crystals from Single-Molecule Magnet Arrays. ACS Nano 18, 27988–27996 (2024).
Greilich, A. et al. Robust continuous time crystal in an electron-nuclear spin system. Nat. Phys. 20, 631–636 (2024).
Shukla, R. K., Chotorlishvili, L., Mishra, S. K. & Iemini, F. Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields. Phys. Rev. B 111, 024315 (2025).
De Roeck, W. & Huveneers, F. mc Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).
Ippoliti, M., Kechedzhi, K., Moessner, R., Sondhi, S. & Khemani, V. Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal. PRX Quantum 2, 030346 (2021).
Sahay, R., Machado, F., Ye, B., Laumann, C. R. & Yao, N. Y. Emergent ergodicity at the transition between many-body localized phases. Phys. Rev. Lett. 126, 100604 (2021).
Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).
Maskara, N. et al. Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving. Phys. Rev. Lett. 127, 090602 (2021).
Huang, B. Analytical theory of cat scars with discrete time-crystalline dynamics in Floquet systems. Phys. Rev. B 108, 104309 (2023).
Bao, Z. et al. Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors. Nat. Commun. 15, 8823 (2024).
Morningstar, A., Colmenarez, L., Khemani, V., Luitz, D. J. & Huse, D. A. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B 105, 174205 (2022).
Long, D. M., Crowley, P. J. D., Khemani, V. & Chandran, A. Phenomenology of the prethermal many-body localized regime. Phys. Rev. Lett. 131, 106301 (2023).
Paeckel, S. et al. Time-evolution methods for matrix-product states. Ann. Phys. 411, 167998 (2019).
Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. arXiv preprint arXiv:cond–mat/0407066 (2004).
Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007).
Tindall, J. & Fishman, M. Gauging tensor networks with belief propagation. SciPost Phys. 15, 222 (2023).
Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).
Zhuk, S., Robertson, N. F. & Bravyi, S. Trotter error bounds and dynamic multi-product formulas for hamiltonian simulation. Phys. Rev. Research 6, 033309 (2024).
Vazquez, A. C., Egger, D. J., Ochsner, D. & Woerner, S. Well-conditioned multi-product formulas for hardware-friendly hamiltonian simulation. Quantum 7, 1067 (2023).
Robertson, N. F. et al. Tensor Network Enhanced Dynamic Multiproduct Formulas. PRX Quantum 6, 020360 (2025).
Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. of Phys. 326, 96–192 (2011).
Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).
Hauschild, J. & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes 5 (2018).
Hauschild, J. et al. Tensor network python (tenpy) version 1. SciPost Physics Codebases (2024).
Tindall, J., Fishman, M., Stoudenmire, E. M. & Sels, D. Efficient tensor network simulation of ibm’s eagle kicked ising experiment. PRX Quantum 5, 010308 (2024).
Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).
Fishman, M. T. ITensorNetworks.jl (2024).
Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor Software Library for Tensor Network Calculations. SciPost Phys. Codebases 4 (2022).