• Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vidmar, L. & Rigol, M. Generalized gibbs ensemble in integrable lattice models. J. Stat. Mech.: Theory Exp. 2016, 064007 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Davoudi, Z. et al. Quantum thermodynamics of nonequilibrium processes in lattice gauge theories. Phys. Rev. Lett. 133, 250402 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

    CAS 

    Google Scholar
     

  • Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal long-range order in floquet systems. Phys. Rev. B 94, 085112 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zaletel, M. P. et al. Colloquium: Quantum and classical discrete time crystals. Phys. Mod. Phys. 95, 031001 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ponte, P., Papić, Z., Huveneers, F. mc & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pal, S., Nishad, N., Mahesh, T. S. & Sreejith, G. J. Temporal Order in Periodically Driven Spins in Star-Shaped Clusters. Phys. Rev. Lett. 120, 180602 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rovny, J., Blum, R. L. & Barrett, S. E. Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System. Phys. Rev. Lett. 120, 180603 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Rovny, J., Blum, R. L. & Barrett, S. E. 31p NMR study of discrete time-crystalline signatures in an ordered crystal of ammonium dihydrogen phosphate. Phys. Rev. B 97, 184301 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Observation of a Space-Time Crystal in a Superfluid Quantum Gas. Phys. Rev. Lett. 121, 185301 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Autti, S., Eltsov, V. B. & Volovik, G. E. Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal. Phys. Rev. Lett. 120, 215301 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Randall, J. et al. Many-body–localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Frey, P. & Rachel, S. Realization of a discrete time crystal on 57 qubits of a quantum computer. Sci. Adv. 8, eabm7652 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms. Nat. Commun. 15, 9730 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinjo, K., Seki, K., Shirakawa, T., Sun, R.-Y. & Yunoki, S. Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer. arXiv preprint arXiv:2403.16718 (2024).

  • Xiang, L. et al. Long-lived topological time-crystalline order on a quantum processor. Nature Communications 15, 8963 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahl, T. B., Han, B. & Béri, B. Topologically ordered time crystals. Nature Communications 15, 9845 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandes, L., Tindall, J. & Sels, D. Nonperturbative decay of bipartite discrete time crystals. Phys. Rev. B 111, L100304 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kimura, S. et al. Field-Induced Order-Disorder Transition in Antiferromagnetic baco2v2o8 Driven by a Softening of Spinon Excitation. Phys. Rev. Lett. 99, 087602 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Breunig, O. et al. Spin-\(\frac{1}{2}xxz\) chain system cs2cocl4 in a transverse magnetic field. Phys. Rev. Lett. 111, 187202 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Toskovic, R. et al. Atomic spin-chain realization of a model for quantum criticality. Nat. Phys. 12, 656–660 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, B., Van Dyke, J. S., Warren, A., Economou, S. E. & Barnes, E. Discrete time crystal in the gradient-field Heisenberg model. Phys. Rev. B 101, 115303 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Throckmorton, R. E. & Das Sarma, S. Effects of leakage on the realization of a discrete time crystal in a chain of singlet-triplet qubits. Phys. Rev. B 106, 245419 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sarkar, S. & Dubi, Y. Time Crystals from Single-Molecule Magnet Arrays. ACS Nano 18, 27988–27996 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greilich, A. et al. Robust continuous time crystal in an electron-nuclear spin system. Nat. Phys. 20, 631–636 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shukla, R. K., Chotorlishvili, L., Mishra, S. K. & Iemini, F. Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields. Phys. Rev. B 111, 024315 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • De Roeck, W. & Huveneers, F. mc Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ippoliti, M., Kechedzhi, K., Moessner, R., Sondhi, S. & Khemani, V. Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal. PRX Quantum 2, 030346 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sahay, R., Machado, F., Ye, B., Laumann, C. R. & Yao, N. Y. Emergent ergodicity at the transition between many-body localized phases. Phys. Rev. Lett. 126, 100604 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maskara, N. et al. Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving. Phys. Rev. Lett. 127, 090602 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, B. Analytical theory of cat scars with discrete time-crystalline dynamics in Floquet systems. Phys. Rev. B 108, 104309 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bao, Z. et al. Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors. Nat. Commun. 15, 8823 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morningstar, A., Colmenarez, L., Khemani, V., Luitz, D. J. & Huse, D. A. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B 105, 174205 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Long, D. M., Crowley, P. J. D., Khemani, V. & Chandran, A. Phenomenology of the prethermal many-body localized regime. Phys. Rev. Lett. 131, 106301 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Paeckel, S. et al. Time-evolution methods for matrix-product states. Ann. Phys. 411, 167998 (2019).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. arXiv preprint arXiv:cond–mat/0407066 (2004).

  • Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Tindall, J. & Fishman, M. Gauging tensor networks with belief propagation. SciPost Phys. 15, 222 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhuk, S., Robertson, N. F. & Bravyi, S. Trotter error bounds and dynamic multi-product formulas for hamiltonian simulation. Phys. Rev. Research 6, 033309 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vazquez, A. C., Egger, D. J., Ochsner, D. & Woerner, S. Well-conditioned multi-product formulas for hardware-friendly hamiltonian simulation. Quantum 7, 1067 (2023).

    Article 

    Google Scholar
     

  • Robertson, N. F. et al. Tensor Network Enhanced Dynamic Multiproduct Formulas. PRX Quantum 6, 020360 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. of Phys. 326, 96–192 (2011).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauschild, J. & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes 5 (2018).

  • Hauschild, J. et al. Tensor network python (tenpy) version 1. SciPost Physics Codebases (2024).

  • Tindall, J., Fishman, M., Stoudenmire, E. M. & Sels, D. Efficient tensor network simulation of ibm’s eagle kicked ising experiment. PRX Quantum 5, 010308 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fishman, M. T. ITensorNetworks.jl (2024).

  • Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor Software Library for Tensor Network Calculations. SciPost Phys. Codebases 4 (2022).