• Einstein, A. & de Haas, W. J. Experimental proof of the existence of Ampère’s molecular currents. KNAW Proc. 18, 696–711 (1915).


    Google Scholar
     

  • Scott, G. G. Review of gyromagnetic ratio experiments. Rev. Mod. Phys. 34, 102–109 (1962).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. F. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Romao, C. P., Catena, R., Spaldin, N. A. & Matas, M. Chiral phonons as dark matter detectors. Phys. Rev. Res. 5, 043262 (2023).

    Article 

    Google Scholar
     

  • Ren, Y. F., Xiang, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. et al. Chiral phonon activated spin Seeback effect. Nat. Mater. 22, 322–328 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Basini, M. et al. Terahertz electric-field-driven dynamical multiferroicity in SrTiO3. Nature 628, 534–539 (2024).

    Article 

    Google Scholar
     

  • Ohe, K. et al. Chirality-induced selectivity of phonon angular momentum in chiral quartz crystals. Phys. Rev. Lett. 132, 056302 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Chen et al. Chiral phonon diode effect in chiral cystals. Nano Lett. 4, 1688–1693 (2022).

  • Liu, M. et al. Light-driven nanoscale plasmonic motors. Nat. Nanotech. 5, 570–573 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, T. T., Murakami, S. & Miao, H. Topological and chiral phonons. Nat. Commun. 16, 3560 (2025).

    Article 

    Google Scholar
     

  • Zhang, T. T., Liu, Y., Miao, H. & Murakami, S. New advances in phonons: from band topology to quasiparticle chirality. Preprint at https://arxiv.org/abs/2505.06179 (2025).

  • Alfonsov, A., Büchner, B. & Kataev, V. All-on-chip concurrent measurements of the static magnetization and of the electron spin resonance with microcantilevers. Appl. Magn. Reson. 53, 555–563 (2022).

    Article 

    Google Scholar
     

  • Fukuroi, T. & Muto, Y. Specific heat of tellurium and selenium at very low temperatures. Chem. Metall. 8, 213–222 (1956).


    Google Scholar
     

  • Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Tang, F. et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature 569, 537–541 (2019).

    Article 

    Google Scholar
     

  • Gooth, J. et al. Axionic charge density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).

    Article 

    Google Scholar
     

  • Miao, H. et al. Spontaneous chirality flipping in an orthogonal spin-charged ordered topological magnet. Phys. Rev. X 14, 011053 (2024).


    Google Scholar
     

  • Yang, F., et al. Incommensurate transverse Peierls transition. Preprint at https://arxiv.org/abs/2410.10539 (2024).

  • Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).

    Article 

    Google Scholar
     

  • Choi, I. H. et al. Real-time dynamics of angular momentum transfer from spin to acoustic chiral phonon in oxide heterostructures. Nat. Nanotech. 19, 1277–1282 (2024).

    Article 

    Google Scholar
     

  • Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108–1111 (2020).

    Article 

    Google Scholar
     

  • Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    Article 

    Google Scholar
     

  • Šmejkal, L. et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 131, 256703 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Park, S. & Yang, B.-J. Phonon angular momentum Hall effect. Nano Lett. 20, 7694–7699 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Kitaev, A. Y. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ideue, T. et al. Pressure-induced topological phase transition in noncentrosymmetric element tellurium. Proc. Natl Acad. Sci. USA 116, 25530 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Koma, A. & Tanaka, S. Etch pits and crystal structure of tellurium. Phys. Stat. Sol. 40, 239–248 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Ades, S. & Champnes, C. H. Optical activity of tellurium to 20 μm. J. Opt. Soc. Am. 65, 217–218 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Furukawa, T. et al. Current induced magnetization caused by crystal chirality in nonmagnetic elemental tellurium. Phys. Rev. Res. 3, 023111 (2021).

    Article 

    Google Scholar
     

  • Spirito, D., Marras, S. & Martin-Garcia, B. Lattice dynamics in chiral tellurium by linear and circularly polarized Raman spectroscopy: crystal orientation and handedness. J. Mater. Chem. C 12, 2544 (2024).

    Article 

    Google Scholar
     

  • Streib, S. Difference between angular momentum and pseudoangular momentum. Phys. Rev. B 103, L100409 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, T. & Murakami, S. Chiral phonons and pseudoangular momentum in nonsymmorphic systems. Phys. Rev. Res. 4, L012024 (2022).

    Article 

    Google Scholar
     

  • Zhu, H. et al. Observation of chiral phonons. Science 359, 579 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Miao, H. et al. Observation of double Weyl phonons in parity-breaking FeSi. Phys. Rev. Lett. 121, 035302 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2023).


    Google Scholar
     

  • Ueda, H. et al. Chiral phonons in quartz probed by x-rays. Nature 618, 946–950 (2023).

    Article 

    Google Scholar