Keldysh, L. & Kopaev, Y. Possible instability of semimetallic state toward Coulomb interaction. Sov. Phys. Solid State 6, 2219–2224 (1964).
Cloizeaux, J. D. Exciton instability and crystallographic anomalies in semiconductors. J. Phys. Chem. Solids 26, 259–266 (1965).
Jerome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).
Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal–semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).
Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002).
Batista, C. D., Gubernatis, J. E., Bonča, J. & Lin, H. Q. Intermediate coupling theory of electronic ferroelectricity. Phys. Rev. Lett. 92, 187601 (2004).
Mazza, G. & Georges, A. Superradiant quantum materials. Phys. Rev. Lett. 122, 017401 (2019).
Safaei, S. & Mazziotti, D. A. Quantum signature of exciton condensation. Phys. Rev. B 98, 045122 (2018).
Schouten, A. O., Sager-Smith, L. M. & Mazziotti, D. A. Large cumulant eigenvalue as a signature of exciton condensation. Phys. Rev. B 105, 245151 (2022).
Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Proc. Natl Acad. Sci. USA 120, e2221688120 (2023).
Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).
Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).
Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).
Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018).
Varsano, D. et al. Carbon nanotubes as excitonic insulators. Nat. Commun. 8, 1461 (2017).
Ataei, S. S., Varsano, D., Molinari, E. & Rontani, M. Evidence of ideal excitonic insulator in bulk MoS2 under pressure. Proc. Natl Acad. Sci. USA 118, e2010110118 (2021).
Mazza, G. et al. Nature of symmetry breaking at the excitonic insulator transition: Ta2NiSe5. Phys. Rev. Lett. 124, 197601 (2020).
Subedi, A. et al. Orthorhombic-to-monoclinic transition in Ta2NiSe5 due to a zone-center optical phonon instability. Phys. Rev. Mater. 4, 083601 (2020).
Watson, M. D. et al. Band hybridization at the semimetal-semiconductor transition of Ta2NiSe5 enabled by mirror-symmetry breaking. Phys. Rev. Res. 2, 013236 (2020).
Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).
Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).
Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).
Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
Du, L. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).
Wang, R. et al. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).
Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022).
Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).
Ali, M. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).
Soluyanov, A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).
Ma, X. et al. Ta2NiSe5: a candidate topological excitonic insulator with multiple band inversions. Phys. Rev. B 105, 035138 (2022).
Wang, X. et al. Observation of topological edge states in the quantum spin Hall insulator Ta2Pd3Te5. Phys. Rev. B 104, L241408 (2021).
Wang, A. et al. A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5. Nat. Commun. 14, 7647 (2023).
Fukutani, K. et al. Detecting photoelectrons from spontaneously formed excitons. Nat. Phys. 17, 1024–1030 (2021).
Zhang, P. et al. Spontaneous gap opening and potential excitonic states in an ideal Dirac semimetal Ta2Pd3Te5. Phys. Rev. X 14, 011047 (2024).
Huang, J. et al. Evidence for an excitonic insulator state in Ta2Pd3Te5. Phys. Rev. X 14, 011046 (2024).
Yin, J.-X., Pan, S. H. & Hasan, M. Z. Probing topological quantum matter with scanning tunnelling microscopy. Nat. Rev. Phys. 3, 249 (2021).
Yang, F. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 109, 016801 (2012).
Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).
Pauly, C. et al. Subnanometre-wide electron channels protected by topology. Nat. Phys. 11, 338–343 (2015).
Wu, R. et al. Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe5. Phys. Rev. X 6, 021017 (2016).
Li, X.-B. et al. Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe5. Phys. Rev. Lett. 116, 176803 (2016).
Wang, Z. et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. Nat. Mater. 15, 968–973 (2016).
Sessi, P. et al. Robust spin-polarized midgap states at step edges of topological crystalline insulators. Science 354, 1269–1273 (2016).
Peng, L. et al. Observation of topological states residing at step edges of WTe2. Nat. Commun. 8, 659 (2017).
Liu, S. et al. Experimental observation of conductive edge states in weak topological insulator candidate HfTe5. APL Mater. 6, 121111 (2018).
Ugeda, M. M. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 9, 3401 (2018).
Liu, R. Z. et al. Experimental observations indicating the topological nature of the edge states on HfTe5. Chin. Phys. Lett. 36, 117301 (2019).
Shumiya, N. et al. Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator. Nat. Mater. 21, 1111–1115 (2022).
Stühler, R. et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).
Shi, Y. et al. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5, eaat8799 (2019).
Dominguez, F. et al. Testing topological protection of edge states in hexagonal quantum spin Hall candidate materials. Phys. Rev. B 98, 161407(R) (2018).
Fu, Y. S. et al. Observation of Zeeman effect in topological surface state with distinct material dependence. Nat. Commun. 7, 10829 (2016).
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).
Chen, C., Singh, B., Lin, H. & Pereira, V. M. Reproduction of the charge density wave phase diagram in 1T−TiSe2 exposes its excitonic character. Phys. Rev. Lett. 121, 226602 (2018).
Rachel, S. Interacting topological insulators: a review. Rep. Prog. Phys. 81, 116501 (2018).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Mostofi, A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685 (2008).
Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405 (2018).
Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2014).
Edelstein, W. et al. Two-dimensional excitons in magnetic fields. Phys. Rev. B 39, 7697 (1989).
Stier, A. et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 tesla. Nat. Commun. 7, 10643 (2016).
Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).
Bernevig, B. A., Hughes, T. L. & Shou-Cheng Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
Gao, Q. et al. Evidence of high-temperature exciton condensation in a two-dimensional semimetal. Nat. Commun. 14, 994 (2023).
Cudazzo, P., Tokatly, I. V. & Rubio, A. Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphene. Phys. Rev. B 84, 085406 (2011).
Varsano, D., Palummo, M., Molinari, E. & Rontani, M. A monolayer transition-metal dichalcogenide as a topological excitonic insulator. Nat. Nanotechnol. 15, 367 (2020).
Amaricci, A., Mazza, G., Capone, M. & Fabrizio, M. Exciton condensation in strongly correlated quantum spin Hall insulators. Phys. Rev. B 107, 115117 (2023).
Blason, A. & Fabrizio, M. Exciton topology and condensation in a model quantum spin Hall insulator. Phys. Rev. B 102, 035146 (2020).
Cong, K., Noe, G. T. & Kono, J. in Encyclopedia of Modern Optics 2nd edn (eds Guenther, B. D. & Steel, D.) 63–81 (Elsevier, 2018).
Jahan, K. L. et al. Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: application for excitonic lasers. Sci. Rep. 8, 5073 (2018).
Förste, J. et al. Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nat. Commun. 11, 4539 (2020).
Fenton, E. W. Excitonic insulator in a magnetic field. Phys. Rev. 170, 816 (1968).