• Keldysh, L. & Kopaev, Y. Possible instability of semimetallic state toward Coulomb interaction. Sov. Phys. Solid State 6, 2219–2224 (1964).


    Google Scholar
     

  • Cloizeaux, J. D. Exciton instability and crystallographic anomalies in semiconductors. J. Phys. Chem. Solids 26, 259–266 (1965).

    Article 

    Google Scholar
     

  • Jerome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

    Article 

    Google Scholar
     

  • Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal–semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).

    Article 

    Google Scholar
     

  • Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002).

    Article 

    Google Scholar
     

  • Batista, C. D., Gubernatis, J. E., Bonča, J. & Lin, H. Q. Intermediate coupling theory of electronic ferroelectricity. Phys. Rev. Lett. 92, 187601 (2004).

    Article 

    Google Scholar
     

  • Mazza, G. & Georges, A. Superradiant quantum materials. Phys. Rev. Lett. 122, 017401 (2019).

    Article 

    Google Scholar
     

  • Safaei, S. & Mazziotti, D. A. Quantum signature of exciton condensation. Phys. Rev. B 98, 045122 (2018).

    Article 

    Google Scholar
     

  • Schouten, A. O., Sager-Smith, L. M. & Mazziotti, D. A. Large cumulant eigenvalue as a signature of exciton condensation. Phys. Rev. B 105, 245151 (2022).

    Article 

    Google Scholar
     

  • Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Proc. Natl Acad. Sci. USA 120, e2221688120 (2023).

    Article 

    Google Scholar
     

  • Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).

    Article 

    Google Scholar
     

  • Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

    Article 

    Google Scholar
     

  • Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).

    Article 

    Google Scholar
     

  • Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018).

    Article 

    Google Scholar
     

  • Varsano, D. et al. Carbon nanotubes as excitonic insulators. Nat. Commun. 8, 1461 (2017).

    Article 

    Google Scholar
     

  • Ataei, S. S., Varsano, D., Molinari, E. & Rontani, M. Evidence of ideal excitonic insulator in bulk MoS2 under pressure. Proc. Natl Acad. Sci. USA 118, e2010110118 (2021).

    Article 

    Google Scholar
     

  • Mazza, G. et al. Nature of symmetry breaking at the excitonic insulator transition: Ta2NiSe5. Phys. Rev. Lett. 124, 197601 (2020).

    Article 

    Google Scholar
     

  • Subedi, A. et al. Orthorhombic-to-monoclinic transition in Ta2NiSe5 due to a zone-center optical phonon instability. Phys. Rev. Mater. 4, 083601 (2020).

    Article 

    Google Scholar
     

  • Watson, M. D. et al. Band hybridization at the semimetal-semiconductor transition of Ta2NiSe5 enabled by mirror-symmetry breaking. Phys. Rev. Res. 2, 013236 (2020).

    Article 

    Google Scholar
     

  • Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    Article 

    Google Scholar
     

  • Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    Article 

    Google Scholar
     

  • Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Article 

    Google Scholar
     

  • Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article 

    Google Scholar
     

  • Du, L. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).

    Article 

    Google Scholar
     

  • Wang, R. et al. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).

    Article 

    Google Scholar
     

  • Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022).

    Article 

    Google Scholar
     

  • Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).

    Article 

    Google Scholar
     

  • Ali, M. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article 

    Google Scholar
     

  • Soluyanov, A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article 

    Google Scholar
     

  • Ma, X. et al. Ta2NiSe5: a candidate topological excitonic insulator with multiple band inversions. Phys. Rev. B 105, 035138 (2022).

    Article 

    Google Scholar
     

  • Wang, X. et al. Observation of topological edge states in the quantum spin Hall insulator Ta2Pd3Te5. Phys. Rev. B 104, L241408 (2021).

    Article 

    Google Scholar
     

  • Wang, A. et al. A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5. Nat. Commun. 14, 7647 (2023).

    Article 

    Google Scholar
     

  • Fukutani, K. et al. Detecting photoelectrons from spontaneously formed excitons. Nat. Phys. 17, 1024–1030 (2021).

    Article 

    Google Scholar
     

  • Zhang, P. et al. Spontaneous gap opening and potential excitonic states in an ideal Dirac semimetal Ta2Pd3Te5. Phys. Rev. X 14, 011047 (2024).


    Google Scholar
     

  • Huang, J. et al. Evidence for an excitonic insulator state in Ta2Pd3Te5. Phys. Rev. X 14, 011046 (2024).


    Google Scholar
     

  • Yin, J.-X., Pan, S. H. & Hasan, M. Z. Probing topological quantum matter with scanning tunnelling microscopy. Nat. Rev. Phys. 3, 249 (2021).

    Article 

    Google Scholar
     

  • Yang, F. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 109, 016801 (2012).

    Article 

    Google Scholar
     

  • Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    Article 

    Google Scholar
     

  • Pauly, C. et al. Subnanometre-wide electron channels protected by topology. Nat. Phys. 11, 338–343 (2015).

    Article 

    Google Scholar
     

  • Wu, R. et al. Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe5. Phys. Rev. X 6, 021017 (2016).


    Google Scholar
     

  • Li, X.-B. et al. Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe5. Phys. Rev. Lett. 116, 176803 (2016).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. Nat. Mater. 15, 968–973 (2016).

    Article 

    Google Scholar
     

  • Sessi, P. et al. Robust spin-polarized midgap states at step edges of topological crystalline insulators. Science 354, 1269–1273 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Peng, L. et al. Observation of topological states residing at step edges of WTe2. Nat. Commun. 8, 659 (2017).

    Article 

    Google Scholar
     

  • Liu, S. et al. Experimental observation of conductive edge states in weak topological insulator candidate HfTe5. APL Mater. 6, 121111 (2018).

    Article 

    Google Scholar
     

  • Ugeda, M. M. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 9, 3401 (2018).

    Article 

    Google Scholar
     

  • Liu, R. Z. et al. Experimental observations indicating the topological nature of the edge states on HfTe5. Chin. Phys. Lett. 36, 117301 (2019).

    Article 

    Google Scholar
     

  • Shumiya, N. et al. Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator. Nat. Mater. 21, 1111–1115 (2022).

    Article 

    Google Scholar
     

  • Stühler, R. et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).

    Article 

    Google Scholar
     

  • Shi, Y. et al. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5, eaat8799 (2019).

    Article 

    Google Scholar
     

  • Dominguez, F. et al. Testing topological protection of edge states in hexagonal quantum spin Hall candidate materials. Phys. Rev. B 98, 161407(R) (2018).

    Article 

    Google Scholar
     

  • Fu, Y. S. et al. Observation of Zeeman effect in topological surface state with distinct material dependence. Nat. Commun. 7, 10829 (2016).

    Article 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article 

    Google Scholar
     

  • Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

  • Chen, C., Singh, B., Lin, H. & Pereira, V. M. Reproduction of the charge density wave phase diagram in 1T−TiSe2 exposes its excitonic character. Phys. Rev. Lett. 121, 226602 (2018).

    Article 

    Google Scholar
     

  • Rachel, S. Interacting topological insulators: a review. Rep. Prog. Phys. 81, 116501 (2018).

    Article 

    Google Scholar
     

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 

    Google Scholar
     

  • Mostofi, A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685 (2008).

    Article 

    Google Scholar
     

  • Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405 (2018).

    Article 

    Google Scholar
     

  • Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2014).

    Article 

    Google Scholar
     

  • Edelstein, W. et al. Two-dimensional excitons in magnetic fields. Phys. Rev. B 39, 7697 (1989).

    Article 

    Google Scholar
     

  • Stier, A. et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 tesla. Nat. Commun. 7, 10643 (2016).

    Article 

    Google Scholar
     

  • Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    Article 

    Google Scholar
     

  • Bernevig, B. A., Hughes, T. L. & Shou-Cheng Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article 

    Google Scholar
     

  • Gao, Q. et al. Evidence of high-temperature exciton condensation in a two-dimensional semimetal. Nat. Commun. 14, 994 (2023).

    Article 

    Google Scholar
     

  • Cudazzo, P., Tokatly, I. V. & Rubio, A. Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphene. Phys. Rev. B 84, 085406 (2011).

    Article 

    Google Scholar
     

  • Varsano, D., Palummo, M., Molinari, E. & Rontani, M. A monolayer transition-metal dichalcogenide as a topological excitonic insulator. Nat. Nanotechnol. 15, 367 (2020).

    Article 

    Google Scholar
     

  • Amaricci, A., Mazza, G., Capone, M. & Fabrizio, M. Exciton condensation in strongly correlated quantum spin Hall insulators. Phys. Rev. B 107, 115117 (2023).

    Article 

    Google Scholar
     

  • Blason, A. & Fabrizio, M. Exciton topology and condensation in a model quantum spin Hall insulator. Phys. Rev. B 102, 035146 (2020).

    Article 

    Google Scholar
     

  • Cong, K., Noe, G. T. & Kono, J. in Encyclopedia of Modern Optics 2nd edn (eds Guenther, B. D. & Steel, D.) 63–81 (Elsevier, 2018).

  • Jahan, K. L. et al. Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: application for excitonic lasers. Sci. Rep. 8, 5073 (2018).

    Article 

    Google Scholar
     

  • Förste, J. et al. Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nat. Commun. 11, 4539 (2020).

    Article 

    Google Scholar
     

  • Fenton, E. W. Excitonic insulator in a magnetic field. Phys. Rev. 170, 816 (1968).

    Article 

    Google Scholar