• Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016).

    Article 

    Google Scholar
     

  • Li, Z. et al. Atomic optical antennas in solids. Nat. Photonics 18, 1113–1120 (2024).

    Article 

    Google Scholar
     

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020).

    Article 

    Google Scholar
     

  • Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article 

    Google Scholar
     

  • Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article 

    Google Scholar
     

  • Jelezko, F. & Wrachtrup, J. Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006).

    Article 

    Google Scholar
     

  • Ates, S. et al. Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nat. Photonics 3, 724–728 (2009).

    Article 

    Google Scholar
     

  • Liu, S. et al. Super-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies. Nat. Photonics 18, 967–974 (2024).

    Article 

    Google Scholar
     

  • Ma, J. et al. Engineering quantum light sources with flat optics. Adv. Mater. 36, 2313589 (2024).

    Article 

    Google Scholar
     

  • Kan, Y. & Bozhevolnyi, S. I. Advances in metaphotonics empowered single photon emission. Adv. Opt. Mater. 11, 2202759 (2023).

    Article 

    Google Scholar
     

  • Koenderink, A. F. Single-photon nanoantennas. ACS Photonics 4, 710–722 (2017).

    Article 

    Google Scholar
     

  • Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article 

    Google Scholar
     

  • Javadi, A. et al. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nat. Nanotechnol. 13, 398–403 (2018).

    Article 

    Google Scholar
     

  • Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8, 835–840 (2014).

    Article 

    Google Scholar
     

  • Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).

    Article 

    Google Scholar
     

  • Bogdanov, S. I. et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas. Nano Lett. 18, 4837–4844 (2018).

    Article 

    Google Scholar
     

  • Kan, Y. et al. Metasurface‐enabled generation of circularly polarized single photons. Adv. Mater. 32, 1907832 (2020).

    Article 

    Google Scholar
     

  • Liu, X. et al. On-chip generation of single-photon circularly polarized single-mode vortex beams. Sci. Adv. 9, eadh0725 (2023).

    Article 

    Google Scholar
     

  • Komisar, D., Kumar, S., Kan, Y., Wu, C. & Bozhevolnyi, S. I. Generation of radially polarized single photons with plasmonic bullseye antennas. ACS Photonics 8, 2190–2196 (2021).

    Article 

    Google Scholar
     

  • Liu, X. et al. Ultracompact single‐photon sources of linearly polarized vortex beams. Adv. Mater. 36, 2304495 (2024).

    Article 

    Google Scholar
     

  • Liu, X. et al. Off-normal polarized single-photon emission with anisotropic holography metasurfaces. Nano Lett. 24, 13867–13873 (2024).

    Article 

    Google Scholar
     

  • Ha, S. T. et al. Optoelectronic metadevices. Science 386, eadm7442 (2024).

    Article 

    Google Scholar
     

  • Forbes, A., De Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262 (2021).

    Article 

    Google Scholar
     

  • Nape, I., Sephton, B., Ornelas, P., Moodley, C. & Forbes, A. Quantum structured light in high dimensions. APL Photon. 8, 051101 (2023).

    Article 

    Google Scholar
     

  • Nowak, A. K. et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).

    Article 

    Google Scholar
     

  • Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Nat. Commun. 15, 5781 (2024).

    Article 

    Google Scholar
     

  • Albrecht, R., Bommer, A., Deutsch, C., Reichel, J. & Becher, C. Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013).

    Article 

    Google Scholar
     

  • Casabone, B. et al. Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles. Nat. Commun. 12, 3570 (2021).

    Article 

    Google Scholar
     

  • Xia, K. et al. Tunable microcavities coupled to rare-earth quantum emitters. Optica 9, 445–450 (2022).

    Article 

    Google Scholar
     

  • Yang, J. et al. Tunable quantum dots in monolithic Fabry–Perot microcavities for high-performance single-photon sources. Light Sci. Appl. 13, 33 (2024).

    Article 

    Google Scholar
     

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article 

    Google Scholar
     

  • Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photonics 19, 387–391 (2025).

    Article 

    Google Scholar
     

  • Meng, C. et al. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv. 7, eabg5639 (2021).

    Article 

    Google Scholar
     

  • Meng, C., Thrane, P. C., Ding, F. & Bozhevolnyi, S. I. Full-range birefringence control with piezoelectric MEMS-based metasurfaces. Nat. Commun. 13, 2071 (2022).

    Article 

    Google Scholar
     

  • Ding, F., Meng, C. & Bozhevolnyi, S. I. Electrically tunable optical metasurfaces. Photonics Insights 3, R07–R07 (2024).

    Article 

    Google Scholar
     

  • Andersen, S. K. H. et al. Hybrid plasmonic Bullseye antennas for efficient photon collection. ACS Photonics 5, 692–698 (2018).

    Article 

    Google Scholar
     

  • Bakke, T. et al. A novel ultra-planar, long-stroke and low-voltage piezoelectric micromirror. J. Micromech. Microeng. 20, 064010 (2010).

    Article 

    Google Scholar
     

  • Kan, Y. et al. High-dimensional spin-orbital single-photon sources. Sci. Adv. 10, eadq6298 (2024).

    Article 

    Google Scholar
     

  • Tang, H. et al. On-chip multi-degree-of-freedom control of two-dimensional materials. Nature 632, 1038–1044 (2024).

    Article 

    Google Scholar
     

  • Dahl-Hansen, R., Gjessing, J., Mardilovich, P., Fragkiadakis, C. & Thorstensen, J. Reliable Pb(Zr, Ti)O3-based thin film piezoelectric micromirrors for space-applications. Appl. Phys. Lett. 121, 132901 (2022).

    Article 

    Google Scholar
     

  • Kan, Y., Liu, X., Kumar, S. & Bozhevolnyi, S. I. Multichannel quantum emission with on-chip emitter-coupled holographic metasurfaces. ACS Nano 17, 20308–20314 (2023).

    Article 

    Google Scholar
     

  • Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article 

    Google Scholar
     

  • Iwasaki, T. et al. Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett. 119, 253601 (2017).

    Article 

    Google Scholar
     

  • Jantzen, U. et al. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths. New J. Phys. 18, 073036 (2016).

    Article 

    Google Scholar
     

  • Asbahi, M. et al. Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution. Nano Lett. 15, 6066–6070 (2015).

    Article 

    Google Scholar
     

  • Pambudi, M. T. et al. Deterministic positioning of few aqueous colloidal quantum dots. Nanoscale 16, 18339–18347 (2024).

    Article 

    Google Scholar
     

  • Meng, C., Thrane, P. C., Wang, C., Ding, F. & Bozhevolnyi, S. I. MEMS-tunable topological bilayer metasurfaces for reconfigurable dual-state phase control. Optica 11, 1556–1566 (2024).

    Article 

    Google Scholar
     

  • Bartholomew, J. G., De Oliveira Lima, K., Ferrier, A. & Goldner, P. Optical line width broadening mechanisms at the 10 kHz level in Eu3+: Y2O3 nanoparticles. Nano Lett. 17, 778–787 (2017).

    Article 

    Google Scholar
     

  • Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).

    Article 

    Google Scholar
     

  • Lukin, D. M. et al. Spectrally reconfigurable quantum emitters enabled by optimized fast modulation. npj Quantum Inf. 6, 80 (2020).

    Article 

    Google Scholar
     

  • Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photonics 12, 1012–1236 (2020).

    Article 

    Google Scholar