Coasne, B., Galarneau, A., Pellenq, J. & Renzo, F. D. Adsorption, intrusion and freezing in porous silica: the view from the nanoscale. Chem. Soc. Rev. 42, 4141 (2013).
Shchukin, E., Pertsov, A., Amelina, E. & Zlenev, A. Colloid and Surface Chemistry Vol. 12 (Elsevier, 2001).
Ward, C. & Wu, J. Effect of adsorption on the surface tensions of solid–fluid interfaces. J. Phys. Chem. B 111, 3685–3694 (2007).
Dupre, A. Theorie Mechanique de la Chaleur (Gauthier-Villars, 869).
Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity (Clarendon, 1982).
Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).
Essafri, I., Morineau, D. & Ghoufi, A. Microphase separation of a miscible binary liquid mixture under confinement at the nanoscale. npj Comput. Mater. 5, 42 (2019).
Garnier, L., Szymczyk, A., Malfreyt, P. & Ghoufi, A. Physics behind water transport through nanoporous boron nitride and graphene. J. Phys. Chem. Lett. 7, 3371 (2016).
Pereiro, U., Cors, J., Pane, S., Nelson, B. & Kaigala, G. Underpinning transport phenomena for the patterning of biomolecules. Chem. Rev. Soc. 48, 1236–1254 (2019).
Karbowiak, T., Debeaufort, F. & Voilley, A. Importance of surface tension characterization for food, pharmaceutical and packaging products: a review. Crit. Rev. Food Sci. Nutr. 46, 391–407 (2006).
Tariq, M. et al. Surface tension of ionic liquids and ionic liquid solutions. Chem. Soc. Rev. 41, 829–868 (2012).
He, L., Lin, F., Li, X., Sui, H. & Xu, Z. Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem. Soc. Rev. 44, 5466–5494 (2015).
Cai, M., Yu, Q., Liu, W. & Zhou, F. Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020).
Marchand, A., Weijs, J., Snoeijer, J. & Andreotti, B. Why is surface tension a force parallel to the interface? J. Chem. Phys. 79, 999–1008 (2011).
van Honschoten, J. W., Brunets, N. & Tas, N. R. Capillarity at the nanoscale. Chem. Soc. Rev. 39, 1096 (2010).
Falk, K., Joly, F. S. L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano. Lett. 10, 4067 (2010).
Falk, K., Sedlmeier, F., Joly, L., Netz, R. & Bocquet, L. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water. Langmuir 28, 14261 (2012).
Hamon, L. et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 131, 17490 (2009).
Diaz, R., Orcajo, M., Botas, J., Calleja, G. & Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126 (2013).
Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80 (2013).
Prince, J. et al. Self-cleaning metal organic framework (MOF) based ultra filtration membranes — a solution to bio-fouling in membrane separation processes. Sci. Rep. 4, 6555 (2014).
Yot, P. et al. Metal-organic framework as potential shock absorbers, the case of the highly flexible MIL-53(Al). Chem. Comm. 50, 9462–9464 (2014).
Lopez-Olivera, A. et al. SO2 capture by two aluminum-based MOFs: rigid-like MIL-53(Al)-tdc versus breathing MIL-53(Al)-bdc. ACS Appl. Mater. Interfaces 13, 39363–39370 (2021).
Naskar, S., Fan, D., Ghoufi, A. & Maurin, G. Microscopic insight into the shaping of MOFs and its impact on CO2 capture performance. Chem. Sci. 14, 10435–10445 (2023).
Wu, S. Interfacial and surface tensions of polymers. J. Macromol. Sci. C 10, 1–73 (1974).
Wang, K. et al. Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chem. Soc. Rev. 51, 672–719 (2022).
Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805).
Laplace, P. Supplément au tome 10 de Mécanique Céleste (Duprat, 1886).
Jurin, J. An account of some experiments shown before the Royal Society; with an enquiry into the cause of some of the ascent and suspension of water in capillary tubes. Philos. Trans. R. Soc. Lond. 30, 739–747 (1718).
Brown, R. C. The fundamental concepts concerning surface tension and capillarity. Proc. Phys. Soc. 59, 429 (1947).
Couchman, P. R. & Jesser, W. A. On the thermodynamics of surfaces. Surf. Sci. 34, 212–224 (1973).
Cahn, J. W. Thermodynamics of Solid and Fluid Surfaces Ch. 1 (American Society of Metals, 1979).
Andreotti, B. & Snoeijer, J. H. Soft wetting and the Shuttleworth effect, at the crossroads between thermodynamics and mechanics. Europhys. Lett. 113, 66001 (2016).
Müller, P. & Métois, J. J. Anisotropy of the surface thermodynamic properties of silicon. Thin Solid Films 517, 65–68 (2008).
Cammarata, R. & Sieradzki, K. Surface and interface stresses. Annu. Rev. Mater. Sci. 24, 215–234 (1994).
Gibbs, J. The Collected Work of JW Gibbs Vol. 1 (Yale Univ. Press, 1957).
Kramer, D. & Weissmuller, J. A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation. Surf. Sci. 14, 3042–3052 (2007).
Irving, J. & Kirkwood, J. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817 (1950).
Gloor, G., Jackson, G., Blas, F. & de Miguel, E. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J. Chem. Phys. 123, 134703 (2005).
Ghoufi, A., Goujon, F., Lachet, V. & Malfreyt, P. Multiple histogram reweighting method for the surface tension calculation. J. Chem. Phys. 128, 154716 (2008).
Ghoufi, A. & Malfreyt, P. Calculation of the surface tension and pressure components from a non-exponential perturbation method of the thermodynamic route. J. Chem. Phys. 136, 024104 (2012).
Ghoufi, A., Malfreyt, P. & Tildesley, D. J. Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chem. Rev. Soc. 45, 1387–1409 (2016).
Lippmann, G. Ann. Chim. Phys. Paris 5, 494 (1875).
Gibbs, J. The Scientific Papers of J. Willard Gibbs (Longmans and Green, 1931).
Bottomley, D. J., Makkonen, L. & Kolari, K. Incompatibility of the Shuttleworth equation with Hermann’s mathematical structure of thermodynamics. Surf. Sci. 601, 97–101 (2009).
Marichev, V. A. The Shuttleworth equation: its modifications and current state. Prot. Met. Phys. Chem. Surf. 47, 25–30 (2011).
Shuttleworth, R. The surface tension of solids. Proc. Phys. Soc. A 63, 444 (1950).
Eriksson, J. Thermodynamics of surface phase systems v. contribution to the thermodynamics of the solid-gas interface. Surf. Sci. 14, 221–246 (1969).
Miyazaki, J., Barker, J. & Pound, G. A new Monte Carlo method for calculating surface tension. J. Chem. Phys. 64, 3364–3369 (1976).
Broughton, J. & Gilmer, G. Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems. J. Chem. Phys. 84, 5759–5768 (1986).
Leroy, F., dos Santos, D. & Müller-Plathe, F. Interfacial excess free energies of solid–liquid interfaces by molecular dynamics simulation and thermodynamic integration. Macromol. Rapid Commun. 30, 864–870 (2009).
Leroy, F. & Muller-Plathe, F. Dry-surface simulation method for the determination of the work of adhesion of solid–liquid interfaces. Langmuir 31, 8335–8345 (2015).
Pasquale, N. D. & Davidchack, R. A unified description of surface free energy and surface stress. Preprint at https://arxiv.org/pdf/1911.02130v4 (2019).
Pasquale, N. D. & Davidchack, R. Shuttleworth equation: a molecular simulations perspective. J. Chem. Phys. 153, 154705 (2020).
Pasquale, N. D. & Davidchack, R. Cleaving method for molecular crystals and its application to calculation of the surface free energy of crystalline β d-mannitol at room temperature. J. Phys. Chem. A 126, 2134–2141 (2022).
Orselly, M. et al. Molecular interactions at the metal-liquid interfaces. J. Chem. Phys. 156, 234705 (2022).
Kanhaiya, K., Kim, S., Im, W. & Heinz, H. Accurate simulation of surfaces and interfaces of ten fcc metals and steel using Lennard–Jones potentials. npj Comput. Mater. 7, 18 (2021).
Benjamin, R. & Horbach, J. Crystal-liquid interfacial free energy via thermodynamic integration. J. Chem. Phys. 141, 044715 (2014).
Wu, T. & Firoozabadi, A. Calculation of solid–fluid interfacial free energy with consideration of solid deformation by molecular dynamics simulations. J. Phys. Chem. A 125, 5845–5848 (2021).
Parambathu, A. V., dos Santos, T. J. P., Chapman, W. G. & Asthagiri, D. N. Comment on “Calculation of solid–fluid interfacial free energy with consideration of solid deformation by molecular dynamics”. J. Phys. Chem. A 126, 1782–1783 (2022).
Addula, R. & Punnathanam, S. Computation of solid–fluid interfacial free energy in molecular systems using thermodynamic integration. J. Chem. Phys. 153, 154504 (2020).
Yeandel, S., Freeman, C. & Harding, J. A general method for calculating solid/liquid interfacial free energies from atomistic simulations: application to CaSO4–xH2O. J. Chem. Phys. 157, 084117 (2022).
Sanchez-Burgos, I. & Espinosa, J. Direct calculation of the interfacial free energy between NaCl crystal and its aqueous solution at the solubility limit. Phys. Rev. Lett. 130, 118001 (2023).
Ghoufi, A. Surface free energy calculation of the solid–fluid interfaces from molecular simulation. AIP Adv. 14, 045116 (2024).
Frenkel, D. & Smith, B. Understanding Molecular Simulation. From Algorithms to Applications 2nd edn (Academic, 2002).
Allen, M. P. & Tildesley, D. J. Computer Simulations of Liquids (Oxford, 1987).
Noid, W. G., Szukalo, R. J., Kidder, K. M. & Lesniewski, M. C. Rigorous progress in coarse-graining. Annu. Rev. Phys. Chem. 75, 21 (2024).
Biscay, F., Ghoufi, A., Goujon, F., Lachet, V. & Malfreyt, P. Calculation of the surface tension from Monte Carlo simulations: does the model impact on the finite-size effects? J. Chem. Phys. 130, 184710 (2009).
Gor, G. & Bernstein, N. Adsorption-induced surface stresses of the water/quartz interface: ab initio molecular dynamics study. Langmuir 32, 5259–5266 (2016).
Morris, J. & Song, X. The anisotropic free energy of the Lennard–Jones crystal-melt interface. J. Chem. Phys. 119, 3920–3925 (2003).
Müller, P. & Saùl, A. Elastic effects on surface physics. Surf. Sci. Rep. 54, 157–258 (2004).
Dreher, T. et al. Anisotropic surface stresses of a solid/fluid interface: molecular dynamics calculations for the copper/methane interface. J. Chem. Phys. 151, 244703 (2019).
Muller, E. A., Ervik, A. & Mejia, A. A guide to computing interfacial properties of fluids from molecular simulations. Living J. Comput. Mol. Sci. 2, 21385 (2021).
Forester, T. R & Smith, W. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism J. Mater. Chem. 16, 1911–1918 (2006).
Vanommeslaeghe, K. et al. CHARMM General Force Field (CGenFF): a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).
Berendsen, H., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Comm. 91, 43–56 (1995).
Thompson, A. P. et al. LAMMPS: a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Comm. 271, 10817 (2022).
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
Meunier, M. Guest editorial. Mol. Simul. 34, 887–888 (2008).
Brukhno, A. et al. DL_MONTE: a multipurpose code for Monte Carlo simulation. Mol. Simul. 47, 131–151 (2021).
Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 82–101 (2015).
Pasquale, N. D., Davidchack, R. & Rovigatti, L. Cleaving: a LAMMPS package to compute surface free energies. J. Open Source Softw. 9, 5886 (2024).
Clark, S. J. et al. First principles methods using CASTEP. Z. Krist. 220, 567–570 (2005).
Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package — Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).
Kresse, G. & Haner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
Semino, R., Ramsahye, N., Ghoufi, A. & Maurin, G. Microscopic model of the metal-organic framework/polymer interface: a first step toward understanding the compatibility in mixed matrix membranes. ACS Appl. Mater. Interfaces 8, 809–819 (2016).
Kirkwood, J. G. & Buff, F. P. The statistical mechanical theory of solutions. I. J. Chem. Phys. 17, 338 (1949).
Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648 (2001).
Ibergay, C. et al. Molecular simulations of the n-alkane liquid-vapor interface: interfacial properties and their long range corrections. Phys. Rev. E 75, 051602 (2007).
Malijevsky, A. & Jackson, G. A perspective on the interfacial properties of nanoscopic liquid drops. J. Phys. Condens. Matter 24, 464121 (2012).
Lau, G., Ford, I., Hunt, P., Müller, E. & Jackson, G. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water. J. Chem. Phys. 142, 114701 (2015).
D’Oliveira, H., Davoy, X., Arche, E., Malfreyt, P. & Ghouif, A. Test-area surface tension calculation of the graphene-methane interface: fluctuations and commensurability. J. Chem. Phys. 146, 214112 (2017).
Ghoufi, A. & Malfreyt, P. Calculation of the surface tension of water: 40 years of molecular simulations. Mol. Simul. 45, 295–303 (2018).
Frolov, T. & Mishin, Y. Temperature dependence of the surface free energy and surface stress: an atomistic calculation for Cu(110). Phys. Rev. B 79, 045430 (2009).
Alejandre, J., Tildesley, D. & Chapela, G. Molecular dynamics simulation of the orthobaric densities and surface tension of water. J. Chem. Phys. 102, 4574–4583 (1995).
Ghoufi, A. & Malfreyt, P. Local description of surface tension through thermodynamic and mechanical definitions. Mol. Simul. 39, 603 (2012).
Walton, J. P. R. B., Tildesley, D. J., Rowlinson, J. S. & Henderson, J. R. The pressure tensor at the planar surface of a liquid. Mol. Phys. 48, 1357 (1983).
Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta 1286, 183 (1996).
Lu, W.-L. et al. Atomistic simulation study of the fcc and bcc crystal-melt. Surf. Interfaces 28, 101639 (2022).
Shi, K., Smith, E., Santiago, E. & Gubbins, K. A perspective on the microscopic pressure (stress) tensor. J. Chem. Phys. 158, 040901 (2023).
Heinz, H. Calculation of local and average pressure tensors in molecular simulations. Mol. Simul. 33, 747–758 (2007).
Heinz, H., Paul, W. & Binder, K. Calculation of local pressure tensors in systems with many-body interactions. Phys. Rev. E 72, 066704 (2005).
Ndao, M., Goujon, F., Ghoufi, A. & Malfreyt, P. Coarse-grained modeling of the oil-water-surfactant interface through the local definition of the pressure tension and interfacial tension. Theor. Chem. Acc. 136, 2038 (2017).
Broughton, J. & Gilmer, G. Molecular dynamics investigation of the crystal–fluid interface. I. Bulk properties. J. Chem. Phys. 79, 5095–5104 (1983).
Davidchack, R. & Laird, B. Direct calculation of the hard-sphere crystal/melt interfacial free energy. Phys. Rev. Lett. 85, 4571 (2000).
Davidchack, R. & Laird, B. Direct calculation of the crystal–melt interfacial free energies for continuous potentials: application to the Lennard-Jones system. J. Chem. Phys. 118, 7651 (2003).
Davidchack, R. & Laird, B. Crystal structure and interaction dependence of the crystal-melt interfacial free energy. Phys. Rev. Lett. 94, 086102 (2005).
Marichev, V. A. Vague concept of “reversible cleavage” in the theory of the surface tension of solids. Surf. Sci. 603, 3212–3214 (2009).
Marichev, V. A. Concept of reversible cleavage in surface tension of solids. Prot. Met. Phys. Chem. Surf. 46, 21–26 (2010).
Davidchack, R., Handel, R., Anwar, J. & Brukhno, A. Ice Ih–water interfacial free energy of simple water models with full electrostatic interactions. J. Chem. Phys. 8, 2383–2390 (2012).
Zhou, Q. & Fichthorm, K. Obtaining the solid-liquid interfacial free energy via multi-scheme thermodynamic integration: Ag-ethylene glycol interfaces. J. Chem. Phys. 145, 194108 (2016).
Pasquale, N. D. & Davidchack, R. Cleaving method for molecular crystals and its application to calculation of the surface free energy of crystalline β-d-mannitol at room temperature. J. Phys. Chem. A 126, 2134–2141 (2022).
Handel, R., Davidchack, R., Anwar, J. & Brukhno, A. Direct calculation of solid-liquid interfacial free energy for molecular systems TIP4P ice water interface. Phys. Rev. Lett. 100, 036104 (2008).
Davidchack, R. Hard spheres revisited: accurate calculation of the solid–liquid interfacial free energy. J. Chem. Phys. 133, 234701 (2010).
Leroy, F. & Muller-Plathe, F. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. J. Chem. Phys. 133, 044110 (2019).
Surblys, D., Leroy, F., Yamaguchi, Y. & Muller-Plathe, F. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface. J. Chem. Phys. 149, 134707 (2018).
Zwanzig, R. W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 22, 1420 (1954).
Leroy, F. & Muller-Plathe, F. Can continuum thermodynamics characterize Wenzel wetting states of water at the nanometer scale? J. Chem. Theory Comput. 8, 3724–3732 (2012).
Ardham, V., Deichmann, G., van der Vegt, N. & Leroy, F. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method. J. Chem. Phys. 28, 234135 (2015).
Leroy, F., Liu, S. & Zhang, J. Parametrizing nonbonded interactions from wetting experiments via the work of adhesion: example of water on graphene surfaces. J. Phys. Chem. C 119, 28470 (2015).
Leroy, F. & Muller-Plathe, F. Calculation of the work of adhesion of solid–liquid interfaces by molecular dynamics simulations. In NIC Symposium 2016 Vol. 48 (eds Binder, K. et al.) 279 (2016); https://juser.fz-juelich.de/record/503526/files/nic_2016_leroy.pdf?version=1.
Mezei, M. & Beveridge, D. Free energy simulations. Ann. N. Y. Acad. Sci. 482, 1 (1986).
Chipot, C. & Pohorille, A. Free Energy Calculations: Theory and Applications in Chemistry and Biology (Springer, 2007).
Guo, M. & Lu, B.-Y. Long range corrections to thermodynamic properties of inhomogeneous systems with planar interfaces. J. Chem. Phys. 106, 3688–3695 (1997).
Janecek, J. Long range corrections in inhomogeneous simulations. J. Phys. Chem. B 110, 6264–6269 (2006).
Bourrasseau, E., Malfreyt, P. & Ghoufi, A. Surface tension and long range corrections of cylindrical interfaces. J. Chem. Phys. 21, 234708 (2015).
Laird, B., Davidchack, R., Yang, Y. & Asta, M. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs–Cahn integration. J. Chem. Phys. 131, 114110 (2009).
Foiles, S. & Adams, J. Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Phys. Rev. B 40, 5909 (1989).
Mishin, Y., Mehl, M., Papaconstantopoulos, D., Voter, A. & Kress, J. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).
Foiles, S. Evaluation of harmonic methods for calculating the free energy of defects in solids. Phys. Rev. B 49, 14930 (1994).
Turnbull, D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950).
Werder, T. et al. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano. Lett. 1, 697–702 (2001).
Santiso, E., Herdes, C. & Muller, E. On the calculation of solid-fluid contact angles from molecular dynamics. Entropy 15, 3734–3745 (2013).
Essafri, I. et al. Contact angle and surface tension of water on a hexagonal boron nitride monolayer: a methodological investigation. Mol. Simul. 45, 454–461 (2019).
Hoyt, J., Asta, M. & Karma, A. Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys. Rev. Lett. 86, 5530 (2001).
Asta, M., Hoyt, J. & Karma, A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B 66, 1001101(R) (2002).
Morris, J. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 66, 144104 (2002).
Davidchack, R., Morris, J. & Laird, B. The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. J. Chem. Phys. 125, 094710 (2006).
Altmann, S. & Cracknell, A. Lattice harmonics 8. Cubic groups. Rev. Mod. Phys. 37, 19 (1965).
Fehlmer, W. & Vosko, S. A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys. 54, 2159 (1976).
Karma, A. & Rappel, W. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323 (1998).
Ismail, A. E., Grest, G. & Stevens, M. Capillary waves at the liquid-vapor interface and the surface tension of water. J. Chem. Phys. 125, 014702 (2006).
Dolce, D., Swamy, A., Hoyt, J. & Choudhury, P. Computing the solid-liquid interfacial free energy and anisotropy of the Al-Mg system using a MEAM potential with atomistic simulations. Comput. Mat. Sci. 217, 111901 (2023).
Becker, C., Olmsted, D., Asta, M., Hoyt, J. & Foiles, S. Atomistic simulations of crystal-melt interfaces in a model binary alloy: interfacial free energies, adsorption coefficients, and excess entropy. Phys. Rev. B 79, 054109 (2009).
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem 32, 2319–2327 (2011).
Espinosa, J., Vega, C. & Sanz, E. The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations. J. Chem. Phys. 141, 134709 (2014).
Espinosa, J., Vega, C., Valeriani, C. & Sanz, E. The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods. J. Chem. Phys. 142, 194709 (2015).
Tejedor, A. et al. Mold: a LAMMPS package to compute interfacial free energies and nucleation rates. J. Open Source Softw. 19, 6083 (2024).
de Hijes, P. M. & Vega, C. On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system. J. Chem. Phys. 156, 014505 (2022).
de Hijes, P. M., Espinosa, J., Bianco, V., Sanz, E. & Vega, C. Interfacial free energy and Tolman length of curved liquid–solid interfaces from equilibrium studies. J. Phys. Chem. C 124, 8795–8805 (2020).
Alekseechkin, N. Thermodynamic theory of curvature-dependent surface tension: Tolman’s theory revisited. Langmuir 40, 6834–6846 (2024).
Homman, A.-A. et al. Surface tension of spherical drops from surface of tension. J. Chem. Phys. 21, 034110 (2014).
Hill, T. Thermodynamics of small systems. J. Chem. Phys. 36, 3182 (1962).
Dong, W. Thermodynamics of interfaces extended to nanoscales by introducing integral and differential surface tensions. Proc. Natl Acad. Sci. USA. 118, e2019873118 (2021).
Dong, W. Nanoscale thermodynamics needs the concept of a disjoining chemical potential. Nat. Comm. 14, 1824 (2023).
Jiang, H., Zhao, S. & Dong, W. Simulations evidencing two surface tensions for fluids confined in nanopores. Chem. Eng. Sci. 302, 2025 (2024).
Ho, R. et al. Determination of surface heterogeneity of β mannitol by sessile drop contact angle and finite concentration inverse gas chromatography. Int. J. Pharm. 387, 79–86 (2010).
Abascal, J. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 23505 (2005).