• Coasne, B., Galarneau, A., Pellenq, J. & Renzo, F. D. Adsorption, intrusion and freezing in porous silica: the view from the nanoscale. Chem. Soc. Rev. 42, 4141 (2013).


    Google Scholar
     

  • Shchukin, E., Pertsov, A., Amelina, E. & Zlenev, A. Colloid and Surface Chemistry Vol. 12 (Elsevier, 2001).

  • Ward, C. & Wu, J. Effect of adsorption on the surface tensions of solid–fluid interfaces. J. Phys. Chem. B 111, 3685–3694 (2007).


    Google Scholar
     

  • Dupre, A. Theorie Mechanique de la Chaleur (Gauthier-Villars, 869).

  • Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity (Clarendon, 1982).


    Google Scholar
     

  • Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Essafri, I., Morineau, D. & Ghoufi, A. Microphase separation of a miscible binary liquid mixture under confinement at the nanoscale. npj Comput. Mater. 5, 42 (2019).

    ADS 

    Google Scholar
     

  • Garnier, L., Szymczyk, A., Malfreyt, P. & Ghoufi, A. Physics behind water transport through nanoporous boron nitride and graphene. J. Phys. Chem. Lett. 7, 3371 (2016).


    Google Scholar
     

  • Pereiro, U., Cors, J., Pane, S., Nelson, B. & Kaigala, G. Underpinning transport phenomena for the patterning of biomolecules. Chem. Rev. Soc. 48, 1236–1254 (2019).


    Google Scholar
     

  • Karbowiak, T., Debeaufort, F. & Voilley, A. Importance of surface tension characterization for food, pharmaceutical and packaging products: a review. Crit. Rev. Food Sci. Nutr. 46, 391–407 (2006).


    Google Scholar
     

  • Tariq, M. et al. Surface tension of ionic liquids and ionic liquid solutions. Chem. Soc. Rev. 41, 829–868 (2012).


    Google Scholar
     

  • He, L., Lin, F., Li, X., Sui, H. & Xu, Z. Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem. Soc. Rev. 44, 5466–5494 (2015).


    Google Scholar
     

  • Cai, M., Yu, Q., Liu, W. & Zhou, F. Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020).


    Google Scholar
     

  • Marchand, A., Weijs, J., Snoeijer, J. & Andreotti, B. Why is surface tension a force parallel to the interface? J. Chem. Phys. 79, 999–1008 (2011).


    Google Scholar
     

  • van Honschoten, J. W., Brunets, N. & Tas, N. R. Capillarity at the nanoscale. Chem. Soc. Rev. 39, 1096 (2010).


    Google Scholar
     

  • Falk, K., Joly, F. S. L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano. Lett. 10, 4067 (2010).

    ADS 

    Google Scholar
     

  • Falk, K., Sedlmeier, F., Joly, L., Netz, R. & Bocquet, L. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water. Langmuir 28, 14261 (2012).


    Google Scholar
     

  • Hamon, L. et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 131, 17490 (2009).


    Google Scholar
     

  • Diaz, R., Orcajo, M., Botas, J., Calleja, G. & Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126 (2013).

    ADS 

    Google Scholar
     

  • Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80 (2013).

    ADS 

    Google Scholar
     

  • Prince, J. et al. Self-cleaning metal organic framework (MOF) based ultra filtration membranes — a solution to bio-fouling in membrane separation processes. Sci. Rep. 4, 6555 (2014).


    Google Scholar
     

  • Yot, P. et al. Metal-organic framework as potential shock absorbers, the case of the highly flexible MIL-53(Al). Chem. Comm. 50, 9462–9464 (2014).


    Google Scholar
     

  • Lopez-Olivera, A. et al. SO2 capture by two aluminum-based MOFs: rigid-like MIL-53(Al)-tdc versus breathing MIL-53(Al)-bdc. ACS Appl. Mater. Interfaces 13, 39363–39370 (2021).


    Google Scholar
     

  • Naskar, S., Fan, D., Ghoufi, A. & Maurin, G. Microscopic insight into the shaping of MOFs and its impact on CO2 capture performance. Chem. Sci. 14, 10435–10445 (2023).


    Google Scholar
     

  • Wu, S. Interfacial and surface tensions of polymers. J. Macromol. Sci. C 10, 1–73 (1974).


    Google Scholar
     

  • Wang, K. et al. Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chem. Soc. Rev. 51, 672–719 (2022).


    Google Scholar
     

  • Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805).

    ADS 

    Google Scholar
     

  • Laplace, P. Supplément au tome 10 de Mécanique Céleste (Duprat, 1886).

  • Jurin, J. An account of some experiments shown before the Royal Society; with an enquiry into the cause of some of the ascent and suspension of water in capillary tubes. Philos. Trans. R. Soc. Lond. 30, 739–747 (1718).


    Google Scholar
     

  • Brown, R. C. The fundamental concepts concerning surface tension and capillarity. Proc. Phys. Soc. 59, 429 (1947).

    ADS 

    Google Scholar
     

  • Couchman, P. R. & Jesser, W. A. On the thermodynamics of surfaces. Surf. Sci. 34, 212–224 (1973).


    Google Scholar
     

  • Cahn, J. W. Thermodynamics of Solid and Fluid Surfaces Ch. 1 (American Society of Metals, 1979).

  • Andreotti, B. & Snoeijer, J. H. Soft wetting and the Shuttleworth effect, at the crossroads between thermodynamics and mechanics. Europhys. Lett. 113, 66001 (2016).

    ADS 

    Google Scholar
     

  • Müller, P. & Métois, J. J. Anisotropy of the surface thermodynamic properties of silicon. Thin Solid Films 517, 65–68 (2008).

    ADS 

    Google Scholar
     

  • Cammarata, R. & Sieradzki, K. Surface and interface stresses. Annu. Rev. Mater. Sci. 24, 215–234 (1994).

    ADS 

    Google Scholar
     

  • Gibbs, J. The Collected Work of JW Gibbs Vol. 1 (Yale Univ. Press, 1957).

  • Kramer, D. & Weissmuller, J. A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation. Surf. Sci. 14, 3042–3052 (2007).

    ADS 

    Google Scholar
     

  • Irving, J. & Kirkwood, J. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817 (1950).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Gloor, G., Jackson, G., Blas, F. & de Miguel, E. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J. Chem. Phys. 123, 134703 (2005).

    ADS 

    Google Scholar
     

  • Ghoufi, A., Goujon, F., Lachet, V. & Malfreyt, P. Multiple histogram reweighting method for the surface tension calculation. J. Chem. Phys. 128, 154716 (2008).

    ADS 

    Google Scholar
     

  • Ghoufi, A. & Malfreyt, P. Calculation of the surface tension and pressure components from a non-exponential perturbation method of the thermodynamic route. J. Chem. Phys. 136, 024104 (2012).

    ADS 

    Google Scholar
     

  • Ghoufi, A., Malfreyt, P. & Tildesley, D. J. Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chem. Rev. Soc. 45, 1387–1409 (2016).


    Google Scholar
     

  • Lippmann, G. Ann. Chim. Phys. Paris 5, 494 (1875).

  • Gibbs, J. The Scientific Papers of J. Willard Gibbs (Longmans and Green, 1931).

  • Bottomley, D. J., Makkonen, L. & Kolari, K. Incompatibility of the Shuttleworth equation with Hermann’s mathematical structure of thermodynamics. Surf. Sci. 601, 97–101 (2009).

    ADS 

    Google Scholar
     

  • Marichev, V. A. The Shuttleworth equation: its modifications and current state. Prot. Met. Phys. Chem. Surf. 47, 25–30 (2011).


    Google Scholar
     

  • Shuttleworth, R. The surface tension of solids. Proc. Phys. Soc. A 63, 444 (1950).

    ADS 

    Google Scholar
     

  • Eriksson, J. Thermodynamics of surface phase systems v. contribution to the thermodynamics of the solid-gas interface. Surf. Sci. 14, 221–246 (1969).

    ADS 

    Google Scholar
     

  • Miyazaki, J., Barker, J. & Pound, G. A new Monte Carlo method for calculating surface tension. J. Chem. Phys. 64, 3364–3369 (1976).

    ADS 

    Google Scholar
     

  • Broughton, J. & Gilmer, G. Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems. J. Chem. Phys. 84, 5759–5768 (1986).

    ADS 

    Google Scholar
     

  • Leroy, F., dos Santos, D. & Müller-Plathe, F. Interfacial excess free energies of solid–liquid interfaces by molecular dynamics simulation and thermodynamic integration. Macromol. Rapid Commun. 30, 864–870 (2009).


    Google Scholar
     

  • Leroy, F. & Muller-Plathe, F. Dry-surface simulation method for the determination of the work of adhesion of solid–liquid interfaces. Langmuir 31, 8335–8345 (2015).


    Google Scholar
     

  • Pasquale, N. D. & Davidchack, R. A unified description of surface free energy and surface stress. Preprint at https://arxiv.org/pdf/1911.02130v4 (2019).

  • Pasquale, N. D. & Davidchack, R. Shuttleworth equation: a molecular simulations perspective. J. Chem. Phys. 153, 154705 (2020).

    ADS 

    Google Scholar
     

  • Pasquale, N. D. & Davidchack, R. Cleaving method for molecular crystals and its application to calculation of the surface free energy of crystalline β d-mannitol at room temperature. J. Phys. Chem. A 126, 2134–2141 (2022).


    Google Scholar
     

  • Orselly, M. et al. Molecular interactions at the metal-liquid interfaces. J. Chem. Phys. 156, 234705 (2022).

    ADS 

    Google Scholar
     

  • Kanhaiya, K., Kim, S., Im, W. & Heinz, H. Accurate simulation of surfaces and interfaces of ten fcc metals and steel using Lennard–Jones potentials. npj Comput. Mater. 7, 18 (2021).

    ADS 

    Google Scholar
     

  • Benjamin, R. & Horbach, J. Crystal-liquid interfacial free energy via thermodynamic integration. J. Chem. Phys. 141, 044715 (2014).

    ADS 

    Google Scholar
     

  • Wu, T. & Firoozabadi, A. Calculation of solid–fluid interfacial free energy with consideration of solid deformation by molecular dynamics simulations. J. Phys. Chem. A 125, 5845–5848 (2021).


    Google Scholar
     

  • Parambathu, A. V., dos Santos, T. J. P., Chapman, W. G. & Asthagiri, D. N. Comment on “Calculation of solid–fluid interfacial free energy with consideration of solid deformation by molecular dynamics”. J. Phys. Chem. A 126, 1782–1783 (2022).


    Google Scholar
     

  • Addula, R. & Punnathanam, S. Computation of solid–fluid interfacial free energy in molecular systems using thermodynamic integration. J. Chem. Phys. 153, 154504 (2020).

    ADS 

    Google Scholar
     

  • Yeandel, S., Freeman, C. & Harding, J. A general method for calculating solid/liquid interfacial free energies from atomistic simulations: application to CaSO4–xH2O. J. Chem. Phys. 157, 084117 (2022).

    ADS 

    Google Scholar
     

  • Sanchez-Burgos, I. & Espinosa, J. Direct calculation of the interfacial free energy between NaCl crystal and its aqueous solution at the solubility limit. Phys. Rev. Lett. 130, 118001 (2023).

    ADS 

    Google Scholar
     

  • Ghoufi, A. Surface free energy calculation of the solid–fluid interfaces from molecular simulation. AIP Adv. 14, 045116 (2024).

    ADS 

    Google Scholar
     

  • Frenkel, D. & Smith, B. Understanding Molecular Simulation. From Algorithms to Applications 2nd edn (Academic, 2002).

  • Allen, M. P. & Tildesley, D. J. Computer Simulations of Liquids (Oxford, 1987).

  • Noid, W. G., Szukalo, R. J., Kidder, K. M. & Lesniewski, M. C. Rigorous progress in coarse-graining. Annu. Rev. Phys. Chem. 75, 21 (2024).


    Google Scholar
     

  • Biscay, F., Ghoufi, A., Goujon, F., Lachet, V. & Malfreyt, P. Calculation of the surface tension from Monte Carlo simulations: does the model impact on the finite-size effects? J. Chem. Phys. 130, 184710 (2009).

    ADS 

    Google Scholar
     

  • Gor, G. & Bernstein, N. Adsorption-induced surface stresses of the water/quartz interface: ab initio molecular dynamics study. Langmuir 32, 5259–5266 (2016).


    Google Scholar
     

  • Morris, J. & Song, X. The anisotropic free energy of the Lennard–Jones crystal-melt interface. J. Chem. Phys. 119, 3920–3925 (2003).

    ADS 

    Google Scholar
     

  • Müller, P. & Saùl, A. Elastic effects on surface physics. Surf. Sci. Rep. 54, 157–258 (2004).

    ADS 

    Google Scholar
     

  • Dreher, T. et al. Anisotropic surface stresses of a solid/fluid interface: molecular dynamics calculations for the copper/methane interface. J. Chem. Phys. 151, 244703 (2019).

    ADS 

    Google Scholar
     

  • Muller, E. A., Ervik, A. & Mejia, A. A guide to computing interfacial properties of fluids from molecular simulations. Living J. Comput. Mol. Sci. 2, 21385 (2021).


    Google Scholar
     

  • Forester, T. R & Smith, W. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism J. Mater. Chem. 16, 1911–1918 (2006).


    Google Scholar
     

  • Vanommeslaeghe, K. et al. CHARMM General Force Field (CGenFF): a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).


    Google Scholar
     

  • Berendsen, H., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Comm. 91, 43–56 (1995).

    ADS 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS: a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Comm. 271, 10817 (2022).


    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).


    Google Scholar
     

  • Meunier, M. Guest editorial. Mol. Simul. 34, 887–888 (2008).


    Google Scholar
     

  • Brukhno, A. et al. DL_MONTE: a multipurpose code for Monte Carlo simulation. Mol. Simul. 47, 131–151 (2021).


    Google Scholar
     

  • Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 82–101 (2015).


    Google Scholar
     

  • Pasquale, N. D., Davidchack, R. & Rovigatti, L. Cleaving: a LAMMPS package to compute surface free energies. J. Open Source Softw. 9, 5886 (2024).

    ADS 

    Google Scholar
     

  • Clark, S. J. et al. First principles methods using CASTEP. Z. Krist. 220, 567–570 (2005).


    Google Scholar
     

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package — Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    ADS 

    Google Scholar
     

  • Kresse, G. & Haner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    ADS 

    Google Scholar
     

  • Semino, R., Ramsahye, N., Ghoufi, A. & Maurin, G. Microscopic model of the metal-organic framework/polymer interface: a first step toward understanding the compatibility in mixed matrix membranes. ACS Appl. Mater. Interfaces 8, 809–819 (2016).


    Google Scholar
     

  • Kirkwood, J. G. & Buff, F. P. The statistical mechanical theory of solutions. I. J. Chem. Phys. 17, 338 (1949).

    ADS 

    Google Scholar
     

  • Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648 (2001).

    ADS 

    Google Scholar
     

  • Ibergay, C. et al. Molecular simulations of the n-alkane liquid-vapor interface: interfacial properties and their long range corrections. Phys. Rev. E 75, 051602 (2007).

    ADS 

    Google Scholar
     

  • Malijevsky, A. & Jackson, G. A perspective on the interfacial properties of nanoscopic liquid drops. J. Phys. Condens. Matter 24, 464121 (2012).

    ADS 

    Google Scholar
     

  • Lau, G., Ford, I., Hunt, P., Müller, E. & Jackson, G. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water. J. Chem. Phys. 142, 114701 (2015).

    ADS 

    Google Scholar
     

  • D’Oliveira, H., Davoy, X., Arche, E., Malfreyt, P. & Ghouif, A. Test-area surface tension calculation of the graphene-methane interface: fluctuations and commensurability. J. Chem. Phys. 146, 214112 (2017).

    ADS 

    Google Scholar
     

  • Ghoufi, A. & Malfreyt, P. Calculation of the surface tension of water: 40 years of molecular simulations. Mol. Simul. 45, 295–303 (2018).


    Google Scholar
     

  • Frolov, T. & Mishin, Y. Temperature dependence of the surface free energy and surface stress: an atomistic calculation for Cu(110). Phys. Rev. B 79, 045430 (2009).

    ADS 

    Google Scholar
     

  • Alejandre, J., Tildesley, D. & Chapela, G. Molecular dynamics simulation of the orthobaric densities and surface tension of water. J. Chem. Phys. 102, 4574–4583 (1995).

    ADS 

    Google Scholar
     

  • Ghoufi, A. & Malfreyt, P. Local description of surface tension through thermodynamic and mechanical definitions. Mol. Simul. 39, 603 (2012).


    Google Scholar
     

  • Walton, J. P. R. B., Tildesley, D. J., Rowlinson, J. S. & Henderson, J. R. The pressure tensor at the planar surface of a liquid. Mol. Phys. 48, 1357 (1983).

    ADS 

    Google Scholar
     

  • Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta 1286, 183 (1996).


    Google Scholar
     

  • Lu, W.-L. et al. Atomistic simulation study of the fcc and bcc crystal-melt. Surf. Interfaces 28, 101639 (2022).


    Google Scholar
     

  • Shi, K., Smith, E., Santiago, E. & Gubbins, K. A perspective on the microscopic pressure (stress) tensor. J. Chem. Phys. 158, 040901 (2023).

    ADS 

    Google Scholar
     

  • Heinz, H. Calculation of local and average pressure tensors in molecular simulations. Mol. Simul. 33, 747–758 (2007).


    Google Scholar
     

  • Heinz, H., Paul, W. & Binder, K. Calculation of local pressure tensors in systems with many-body interactions. Phys. Rev. E 72, 066704 (2005).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Ndao, M., Goujon, F., Ghoufi, A. & Malfreyt, P. Coarse-grained modeling of the oil-water-surfactant interface through the local definition of the pressure tension and interfacial tension. Theor. Chem. Acc. 136, 2038 (2017).


    Google Scholar
     

  • Broughton, J. & Gilmer, G. Molecular dynamics investigation of the crystal–fluid interface. I. Bulk properties. J. Chem. Phys. 79, 5095–5104 (1983).

    ADS 

    Google Scholar
     

  • Davidchack, R. & Laird, B. Direct calculation of the hard-sphere crystal/melt interfacial free energy. Phys. Rev. Lett. 85, 4571 (2000).


    Google Scholar
     

  • Davidchack, R. & Laird, B. Direct calculation of the crystal–melt interfacial free energies for continuous potentials: application to the Lennard-Jones system. J. Chem. Phys. 118, 7651 (2003).

    ADS 

    Google Scholar
     

  • Davidchack, R. & Laird, B. Crystal structure and interaction dependence of the crystal-melt interfacial free energy. Phys. Rev. Lett. 94, 086102 (2005).

    ADS 

    Google Scholar
     

  • Marichev, V. A. Vague concept of “reversible cleavage” in the theory of the surface tension of solids. Surf. Sci. 603, 3212–3214 (2009).

    ADS 

    Google Scholar
     

  • Marichev, V. A. Concept of reversible cleavage in surface tension of solids. Prot. Met. Phys. Chem. Surf. 46, 21–26 (2010).


    Google Scholar
     

  • Davidchack, R., Handel, R., Anwar, J. & Brukhno, A. Ice Ih–water interfacial free energy of simple water models with full electrostatic interactions. J. Chem. Phys. 8, 2383–2390 (2012).


    Google Scholar
     

  • Zhou, Q. & Fichthorm, K. Obtaining the solid-liquid interfacial free energy via multi-scheme thermodynamic integration: Ag-ethylene glycol interfaces. J. Chem. Phys. 145, 194108 (2016).

    ADS 

    Google Scholar
     

  • Pasquale, N. D. & Davidchack, R. Cleaving method for molecular crystals and its application to calculation of the surface free energy of crystalline β-d-mannitol at room temperature. J. Phys. Chem. A 126, 2134–2141 (2022).


    Google Scholar
     

  • Handel, R., Davidchack, R., Anwar, J. & Brukhno, A. Direct calculation of solid-liquid interfacial free energy for molecular systems TIP4P ice water interface. Phys. Rev. Lett. 100, 036104 (2008).

    ADS 

    Google Scholar
     

  • Davidchack, R. Hard spheres revisited: accurate calculation of the solid–liquid interfacial free energy. J. Chem. Phys. 133, 234701 (2010).

    ADS 

    Google Scholar
     

  • Leroy, F. & Muller-Plathe, F. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. J. Chem. Phys. 133, 044110 (2019).

    ADS 

    Google Scholar
     

  • Surblys, D., Leroy, F., Yamaguchi, Y. & Muller-Plathe, F. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface. J. Chem. Phys. 149, 134707 (2018).

    ADS 

    Google Scholar
     

  • Zwanzig, R. W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 22, 1420 (1954).

    ADS 

    Google Scholar
     

  • Leroy, F. & Muller-Plathe, F. Can continuum thermodynamics characterize Wenzel wetting states of water at the nanometer scale? J. Chem. Theory Comput. 8, 3724–3732 (2012).


    Google Scholar
     

  • Ardham, V., Deichmann, G., van der Vegt, N. & Leroy, F. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method. J. Chem. Phys. 28, 234135 (2015).


    Google Scholar
     

  • Leroy, F., Liu, S. & Zhang, J. Parametrizing nonbonded interactions from wetting experiments via the work of adhesion: example of water on graphene surfaces. J. Phys. Chem. C 119, 28470 (2015).


    Google Scholar
     

  • Leroy, F. & Muller-Plathe, F. Calculation of the work of adhesion of solid–liquid interfaces by molecular dynamics simulations. In NIC Symposium 2016 Vol. 48 (eds Binder, K. et al.) 279 (2016); https://juser.fz-juelich.de/record/503526/files/nic_2016_leroy.pdf?version=1.

  • Mezei, M. & Beveridge, D. Free energy simulations. Ann. N. Y. Acad. Sci. 482, 1 (1986).

    ADS 

    Google Scholar
     

  • Chipot, C. & Pohorille, A. Free Energy Calculations: Theory and Applications in Chemistry and Biology (Springer, 2007).

  • Guo, M. & Lu, B.-Y. Long range corrections to thermodynamic properties of inhomogeneous systems with planar interfaces. J. Chem. Phys. 106, 3688–3695 (1997).

    ADS 

    Google Scholar
     

  • Janecek, J. Long range corrections in inhomogeneous simulations. J. Phys. Chem. B 110, 6264–6269 (2006).


    Google Scholar
     

  • Bourrasseau, E., Malfreyt, P. & Ghoufi, A. Surface tension and long range corrections of cylindrical interfaces. J. Chem. Phys. 21, 234708 (2015).

    ADS 

    Google Scholar
     

  • Laird, B., Davidchack, R., Yang, Y. & Asta, M. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs–Cahn integration. J. Chem. Phys. 131, 114110 (2009).

    ADS 

    Google Scholar
     

  • Foiles, S. & Adams, J. Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Phys. Rev. B 40, 5909 (1989).

    ADS 

    Google Scholar
     

  • Mishin, Y., Mehl, M., Papaconstantopoulos, D., Voter, A. & Kress, J. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).

    ADS 

    Google Scholar
     

  • Foiles, S. Evaluation of harmonic methods for calculating the free energy of defects in solids. Phys. Rev. B 49, 14930 (1994).

    ADS 

    Google Scholar
     

  • Turnbull, D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950).

    ADS 

    Google Scholar
     

  • Werder, T. et al. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano. Lett. 1, 697–702 (2001).

    ADS 

    Google Scholar
     

  • Santiso, E., Herdes, C. & Muller, E. On the calculation of solid-fluid contact angles from molecular dynamics. Entropy 15, 3734–3745 (2013).

    ADS 

    Google Scholar
     

  • Essafri, I. et al. Contact angle and surface tension of water on a hexagonal boron nitride monolayer: a methodological investigation. Mol. Simul. 45, 454–461 (2019).


    Google Scholar
     

  • Hoyt, J., Asta, M. & Karma, A. Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys. Rev. Lett. 86, 5530 (2001).

    ADS 

    Google Scholar
     

  • Asta, M., Hoyt, J. & Karma, A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B 66, 1001101(R) (2002).


    Google Scholar
     

  • Morris, J. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 66, 144104 (2002).

    ADS 

    Google Scholar
     

  • Davidchack, R., Morris, J. & Laird, B. The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. J. Chem. Phys. 125, 094710 (2006).

    ADS 

    Google Scholar
     

  • Altmann, S. & Cracknell, A. Lattice harmonics 8. Cubic groups. Rev. Mod. Phys. 37, 19 (1965).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Fehlmer, W. & Vosko, S. A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys. 54, 2159 (1976).

    ADS 

    Google Scholar
     

  • Karma, A. & Rappel, W. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323 (1998).

    ADS 

    Google Scholar
     

  • Ismail, A. E., Grest, G. & Stevens, M. Capillary waves at the liquid-vapor interface and the surface tension of water. J. Chem. Phys. 125, 014702 (2006).

    ADS 

    Google Scholar
     

  • Dolce, D., Swamy, A., Hoyt, J. & Choudhury, P. Computing the solid-liquid interfacial free energy and anisotropy of the Al-Mg system using a MEAM potential with atomistic simulations. Comput. Mat. Sci. 217, 111901 (2023).


    Google Scholar
     

  • Becker, C., Olmsted, D., Asta, M., Hoyt, J. & Foiles, S. Atomistic simulations of crystal-melt interfaces in a model binary alloy: interfacial free energies, adsorption coefficients, and excess entropy. Phys. Rev. B 79, 054109 (2009).

    ADS 

    Google Scholar
     

  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem 32, 2319–2327 (2011).


    Google Scholar
     

  • Espinosa, J., Vega, C. & Sanz, E. The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations. J. Chem. Phys. 141, 134709 (2014).

    ADS 

    Google Scholar
     

  • Espinosa, J., Vega, C., Valeriani, C. & Sanz, E. The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods. J. Chem. Phys. 142, 194709 (2015).

    ADS 

    Google Scholar
     

  • Tejedor, A. et al. Mold: a LAMMPS package to compute interfacial free energies and nucleation rates. J. Open Source Softw. 19, 6083 (2024).

    ADS 

    Google Scholar
     

  • de Hijes, P. M. & Vega, C. On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system. J. Chem. Phys. 156, 014505 (2022).

    ADS 

    Google Scholar
     

  • de Hijes, P. M., Espinosa, J., Bianco, V., Sanz, E. & Vega, C. Interfacial free energy and Tolman length of curved liquid–solid interfaces from equilibrium studies. J. Phys. Chem. C 124, 8795–8805 (2020).


    Google Scholar
     

  • Alekseechkin, N. Thermodynamic theory of curvature-dependent surface tension: Tolman’s theory revisited. Langmuir 40, 6834–6846 (2024).


    Google Scholar
     

  • Homman, A.-A. et al. Surface tension of spherical drops from surface of tension. J. Chem. Phys. 21, 034110 (2014).

    ADS 

    Google Scholar
     

  • Hill, T. Thermodynamics of small systems. J. Chem. Phys. 36, 3182 (1962).

    ADS 

    Google Scholar
     

  • Dong, W. Thermodynamics of interfaces extended to nanoscales by introducing integral and differential surface tensions. Proc. Natl Acad. Sci. USA. 118, e2019873118 (2021).

    MathSciNet 

    Google Scholar
     

  • Dong, W. Nanoscale thermodynamics needs the concept of a disjoining chemical potential. Nat. Comm. 14, 1824 (2023).


    Google Scholar
     

  • Jiang, H., Zhao, S. & Dong, W. Simulations evidencing two surface tensions for fluids confined in nanopores. Chem. Eng. Sci. 302, 2025 (2024).


    Google Scholar
     

  • Ho, R. et al. Determination of surface heterogeneity of β mannitol by sessile drop contact angle and finite concentration inverse gas chromatography. Int. J. Pharm. 387, 79–86 (2010).


    Google Scholar
     

  • Abascal, J. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 23505 (2005).


    Google Scholar