• Ebbesen, T. W. Hybrid light-matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

    CAS 

    Google Scholar
     

  • Feist, J., Galego, J. & Garcia-Vidal, F. J. Polaritonic chemistry with organic molecules. ACS Photonics 5, 205 (2018).

    CAS 

    Google Scholar
     

  • Dunkelberger, A. D., Simpkins, B. S., Vurgaftman, I. & Owrutsky, J. C. Vibration-cavity polariton chemistry and dynamics. Annu. Rev. Phys. Chem. 73, 429–451 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Tibben, D. J. et al. Molecular energy transfer under the strong light–matter interaction regime. Chem. Rev. 123, 8044–8068 (2023).

    CAS 

    Google Scholar
     

  • Hirai, K., Hutchison, J. A. & Uji-i, H. Molecular chemistry in cavity strong coupling. Chem. Sov. 123, 8099–8126 (2023).

    CAS 

    Google Scholar
     

  • Simpkins, B. S., Dunkelberger, A. D. & Vurgaftman, I. Control, modulation, and analytical descriptions of vibrational strong coupling. Chem. Sov. 123, 5020–5048 (2023).

    CAS 

    Google Scholar
     

  • Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Vergauwe, R. M. A. et al. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 58, 15324–15328 (2019).

    CAS 

    Google Scholar
     

  • Hirai, K., Takeda, R., Hutchison, J. A. & Uji-i, H. Modulation of prins cyclization by vibrational strong coupling. Angew. Chem. Int. Ed. 59, 5332–5335 (2020).

    CAS 

    Google Scholar
     

  • Ahn, W., Triana, J. F., Recabal, F., Herrera, F. & Simpkins, B. S. Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities. Science 380, 1165–1168 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Grafton, A. B. et al. Excited-state vibration-polariton transitions and dynamics in nitroprusside. Nat. Commun. 12, 1–9 (2021).


    Google Scholar
     

  • Xiang, B. et al. Intermolecular vibrational energy transfer enabled by microcavity strong light-matter coupling. Science 368, 665–667 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Chen, T.-T., Du, M., Yang, Z., Yuen-Zhou, J. & Xiong, W. Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation. Science 378, 790–794 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • George, J. et al. Multiple rabi splittings under ultrastrong vibrational coupling. Phys. Rev. Lett. 117, 1–5 (2016).


    Google Scholar
     

  • Wright, A. D., Nelson, J. C. & Weichman, M. L. Rovibrational polaritons in gas-phase methane. J. Am. Chem. Soc. 145, 5982–5987 (2023).

    CAS 

    Google Scholar
     

  • Lather, J., Bhatt, P., Thomas, A., Ebbesen, T. W. & George, J. Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules. Angew. Chem. Int. Ed. 58, 10635–10638 (2019).

    CAS 

    Google Scholar
     

  • Li, X., Mandal, A. & Huo, P. Theory of mode-selective chemistry through polaritonic vibrational strong coupling. J. Phys. Chem. Lett. 12, 6974–6982 (2021).

    CAS 

    Google Scholar
     

  • Schäfer, C., Flick, J., Ronca, E., Narang, P. & Rubio, A. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity. Nat. Commun. 13, 7817 (2022).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Sun, J. & Vendrell, O. Modification of thermal chemical rates in a cavity via resonant effects in the collective regime. J. Phys. Chem. Lett. 14, 8397–8404 (2023).

    CAS 

    Google Scholar
     

  • Mandal, A. et al. Theoretical advances in polariton chemistry and molecular cavity quantum electrodynamics. Chem. Rev. 123, 9786–9879 (2023).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Dunkelberger, A., Spann, B., Fears, K., Simpkins, B. & Owrutsky, J. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons. Nat. Commun. 7, 13504 (2016).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wang, D. S., Neuman, T., Yelin, S. F. & Flick, J. Cavity-modified unimolecular dissociation reactions via intramolecular vibrational energy redistribution. J. Phys. Chem. Lett. 13, 3317–3324 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Yu, Q. & Bowman, J. M. Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling. Nat. Commun. 14, 3527 (2023).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lindoy, L. P., Mandal, A. & Reichman, D. R. Quantum dynamical effects of vibrational strong coupling in chemical reactivity. Nat. Comm. 14, 2733 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Schafer, C., Fojt, J., Lindgren, E. & Erhart, P. Machine learning for polaritonic chemistry: accessing chemical kinetics. J. Am. Chem. Soc. 146, 5402–5413 (2024).

    PubMed Central 

    Google Scholar
     

  • Campos-Gonzalez-Angulo, J. A., Ribeiro, R. F. & Yuen-Zhou, J. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 10, 4685 (2019).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Campos-Gonzalez-Angulo, J. A., Ribeiro, R. F. & Yuen-Zhou, J. Generalization of the Tavis–Cummings model for multi-level anharmonic systems. New J. Phys. 23, 063081 (2021).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Mandal, A., Li, X. & Huo, P. Theory of vibrational polariton chemistry in the collective coupling regime. J. Chem. Phys. 156, 014101 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Li, T. E., Subotnik, J. E. & Nitzan, A. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. Proc. Natl. Acad. Sci. USA 117, 18324–18331 (2020).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Li, T. E. & Hammes-Schiffer, S. QM/MM modeling of vibrational polariton induced energy transfer and chemical dynamics. J. Am. Chem. Soc. 145, 377–384 (2023).

    CAS 

    Google Scholar
     

  • Fregoni, J., Garcia-Vidal, F. J. & Feist, J. Theoretical challenges in polaritonic chemistry. ACS Photonics 9, 1096–1107 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Anderson, M. C., Woods, E. J., Fay, T. P., Wales, D. J. & Limmer, D. T. On the mechanism of polaritonic rate suppression from quantum transition paths. J. Phys. Chem. Lett. 14, 6888–6894 (2023).

    CAS 

    Google Scholar
     

  • Fiechter, M. R., Runeson, J. E., Lawrence, J. E. & Richardson, J. O. How quantum is the resonance behavior in vibrational polariton chemistry? J. Phys. Chem. Lett. 14, 8261–8267 (2023).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Sidler, D., Schafer, C., Ruggenthaler, M. & Rubio, A. Polaritonic chemistry: collective strong coupling implies strong local modification of chemical properties. J. Phys. Chem. Lett. 12, 508–516 (2021).

    CAS 

    Google Scholar
     

  • Ruggenthaler, M., Sidler, D. & Rubio, A. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 123, 11191–11229 (2023).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Sidler, D. et al. Unraveling a cavity-induced molecular polarization mechanism from collective vibrational strong coupling. J. Phys. Chem. Lett. 15, 5208–5214 (2023).


    Google Scholar
     

  • Lather, J. & George, J. Improving enzyme catalytic efficiency by cooperative vibrational strong coupling of water. J. Phys. Chem. Lett. 12, 379–384 (2021).

    CAS 

    Google Scholar
     

  • Fukushima, T., Yoshimitsu, S. & Murakoshi, K. Inherent promotion of ionic conductivity via collective vibrational strong coupling of water with the vacuum electromagnetic field. J. Am. Chem. Soc. 144, 12177–12183 (2022).

    CAS 

    Google Scholar
     

  • Fukushima, T., Yoshimitsu, S. & Murakoshi, K. Vibrational coupling of water from weak to ultrastrong coupling regime via cavity mode tuning. J. Phys. Chem. C 125, 25832–25840 (2021).

    CAS 

    Google Scholar
     

  • Lieberherr, A. Z., Furniss, S. T., Lawrence, J. E. & Manolopoulos, D. E. Vibrational strong coupling in liquid water from cavity molecular dynamics. J. Chem. Phys. 158, 234106 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Kadyan, A., Suresh, M. P., Johns, B. & George, J. Understanding the nature of vibro-polaritonic states in water and heavy water. ChemPhysChem 25, e202300560 (2024).

    CAS 

    Google Scholar
     

  • Bakker, H. & Skinner, J. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).

    CAS 

    Google Scholar
     

  • Pakoulev, A., Wang, Z., Pang, Y. & Dlott, D. D. Vibrational energy relaxation pathways of water. Chem. Phys. Lett. 380, 404–410 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Larsen, O. F. & Woutersen, S. Vibrational relaxation of the H2O bending mode in liquid water. J. Chem. Phys. 121, 12143–12145 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Lindner, J. et al. Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 421, 329–333 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Woutersen, S. & Bakker, H. J. Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z., Piatkowski, L., Bakker, H. J. & Bonn, M. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat. Chem. 3, 888–893 (2011).

    CAS 

    Google Scholar
     

  • Yu, C. C. et al. Vibrational couplings and energy transfer pathways of water’s bending mode. Nat. Commun. 11, 1–8 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Auer, B. M. & Skinner, J. L. IR and Raman spectra of liquid water: theory and interpretation. J. Chem. Phys. 128, 224511 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Rey, R., Ingrosso, F., Elsaesser, T. & Hynes, J. T. Pathways for H2O bend vibrational relaxation in liquid water. J. Phys. Chem. A 113, 8949–8962 (2009).

    CAS 

    Google Scholar
     

  • Imoto, S., Xantheas, S. S. & Saito, S. Ultrafast dynamics of liquid water: energy relaxation and transfer processes of the OH stretch and the HOH bend. J. Phys. Chem. B 119, 11068–11078 (2015).

    CAS 

    Google Scholar
     

  • Lock, A. J. & Bakker, H. J. Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117, 1708–1713 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Rey, R., Møller, K. B. & Hynes, J. T. Ultrafast vibrational population dynamics of water and related systems: a theoretical perspective. Chem. Rev. 104, 1915–1928 (2004).

    CAS 

    Google Scholar
     

  • Lawrence, C. P. & Skinner, J. L. Vibrational energy relaxation. J. Chem. Phys. 117, 5827–5838 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Auer, B., Yang, M. & Skinner, J. Two-dimensional infrared spectroscopy and ultrafast anisotropy decay of water. J. Chem. Phys. 132, 224503 (2010).

    ADS 

    Google Scholar
     

  • Fecko, C., Eaves, J., Loparo, J., Tokmakoff, A. & Geissler, P. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Van der Post, S. T. et al. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015).

    ADS 

    Google Scholar
     

  • Ramasesha, K., De Marco, L., Mandal, A. & Tokmakoff, A. Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5, 935–940 (2013).

    CAS 

    Google Scholar
     

  • Ishiyama, T. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water. J. Chem. Phys. 154, 204502 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Searcy, J.-Q. & Fenn, J. Clustering of water on hydrated protons in a supersonic free jet expansion. J. Chem. Phys. 61, 5282–5288 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • Lagutschenkov, A., Fanourgakis, G. S., Niedner-Schatteburg, G. & Xantheas, S. S. The spectroscopic signature of the “all-surface” to “internally solvated” structural transition in water clusters in the n= 17–21 size regime. J. Chem. Phys. 122, 194310 (2005).

    ADS 

    Google Scholar
     

  • Cui, J., Liu, H. & Jordan, K. D. Theoretical characterization of the (H2O) 21 cluster: application of an n-body decomposition procedure. J. Phys. Chem. B 110, 18872–18878 (2006).

    CAS 

    Google Scholar
     

  • Yang, N. et al. Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage. Proc. Natl. Acad. Sci. USA 117, 26047–26052 (2020).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Yu, Q. & Hammes-Schiffer, S. Multidimensional quantum dynamical simulation of infrared spectra under polaritonic vibrational strong coupling. J. Phys. Chem. Lett. 13, 11253–11261 (2022).

    CAS 

    Google Scholar
     

  • Yu, Q. & Bowman, J. M. Fully quantum simulation of polaritonic vibrational spectra of large cavity-molecule system. J. Chem. Theory Comput. 20, 4278–4287 (2024).

    CAS 

    Google Scholar
     

  • Yu, Q. et al. q-AQUA: a many-mody CCSD (T) water potential, including four-body interactions, demonstrates the quantum nature of water from clusters to the liquid phase. J. Phys. Chem. Lett. 13, 5068–5074 (2022).

    CAS 

    Google Scholar
     

  • Liu, H., Wang, Y. & Bowman, J. M. Quantum calculations of the IR spectrum of liquid water using Ab initio and model potential and dipole moment surfaces and comparison with experiment. J. Chem. Phys. 142, 194502 (2015).

    ADS 

    Google Scholar
     

  • Liu, H., Wang, Y. & Bowman, J. M. Ab initio deconstruction of the vibrational relaxation pathways of dilute HOD in ice Ih. J. Am. Chem. Soc. 136, 5888–5891 (2014).

    CAS 

    Google Scholar
     

  • Bertie, J. E. & Lan, Z. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O (l) at 25 °C between 15,000 and 1 cm-1. Appl. Spectrosc. 50, 1047–1057 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. & Bowman, J. M. IR spectra of the water hexamer: theory, with inclusion of the monomer bend overtone, and experiment are in agreement. J. Phys. Chem. Lett. 4, 1104–1108 (2013).

    CAS 

    Google Scholar
     

  • Krupp, N. & Vendrell, O. Collective rovibronic dynamics of a diatomic gas coupled by cavity. Phys. Rev. Res. 6, 033134 (2024).

    CAS 

    Google Scholar
     

  • Fan, L.-B. et al. Quantum coherent control of a single molecular-polariton rotation. Phys. Rev. Lett. 130, 043604 (2023).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Fletcher, T., Zhu, A., Lawrence, J. E. & Manolopoulos, D. E. Fast quasi-centroid molecular dynamics. J. Chem. Phys. 155, 231101 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Musil, F., Zaporozhets, I., Noé, F., Clementi, C. & Kapil, V. Quantum dynamics using path integral coarse-graining. J. Chem. Phys. 157, 181102 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Althorpe, S. C. Path integral simulations of condensed-phase vibrational spectroscopy. Annu. Rev. of Phys. Chem. 75, 397–420 (2024).

    CAS 

    Google Scholar
     

  • Partridge, H. & Schwenke, D. W. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. J. Chem. Phys. 106, 4618 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, H., Wang, Y. & Bowman, J. M. Quantum calculations of intramolecular IR spectra of ice models using ab initio potential and dipole moment surfaces. J. Phys. Chem. Lett. 3, 3671–3676 (2012).

    CAS 

    Google Scholar
     

  • Lodi, L., Tennyson, J. & Polyansky, O. L. A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule. J. Chem. Phys. 135, 034113 (2011).

    ADS 

    Google Scholar
     

  • Flick, L. J., Appel, H., Ruggenthaler, M. & Rubio, A. Cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon systems. J. Chem. Theory Comput. 13, 1616–1625 (2017).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. & Bowman, J. M. Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters. J. Chem. Phys. 134, 154510 (2011).

    ADS 

    Google Scholar
     

  • Yu, Q. & Bowman, J. M. High-level quantum calculations of the IR spectra of the Eigen, Zundel, and Ring isomers of H+ (H2O)4 find a single match to experiment. J. Am. Chem. Soc. 139, 10984–10987 (2017).

    CAS 

    Google Scholar
     

  • Kraemer, D. et al. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl. Acad. Sci. USA 105, 437–442 (2008).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bowman, J. M., Carter, S. & Huang, X. MULTIMODE: a code to calculate rovibrational energies of polyatomic molecules. Int. Rev. Phys. Chem. 22, 533–549 (2003).

    CAS 

    Google Scholar
     

  • Yu, Q. et al. Vibrational Dynamics of Molecules 229–339 (World Scientific Publishing, 2022).

  • Burcl, R., Carter, S. & Handy, N. C. Infrared intensities from the MULTIMODE code. Chem. Phys. Lett. 380, 237–244 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Yu, Q., Zhang, D. H. & Bowman, J. M. Source data for theoretical and quantum mechanical deconstruction of vibrational energy transfer pathways modified by collective vibrational strong coupling. https://doi.org/10.5281/zenodo.15681442 (2025).

  • Yu, Q., Zhang, D. H. & Bowman, J. M. Codes for theoretical and quantum mechanical deconstruction of vibrational energy transfer pathways modified by collective vibrational strong coupling. https://doi.org/10.5281/zenodo.15680998 (2025).