Ebbesen, T. W. Hybrid light-matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).
Feist, J., Galego, J. & Garcia-Vidal, F. J. Polaritonic chemistry with organic molecules. ACS Photonics 5, 205 (2018).
Dunkelberger, A. D., Simpkins, B. S., Vurgaftman, I. & Owrutsky, J. C. Vibration-cavity polariton chemistry and dynamics. Annu. Rev. Phys. Chem. 73, 429–451 (2022).
Tibben, D. J. et al. Molecular energy transfer under the strong light–matter interaction regime. Chem. Rev. 123, 8044–8068 (2023).
Hirai, K., Hutchison, J. A. & Uji-i, H. Molecular chemistry in cavity strong coupling. Chem. Sov. 123, 8099–8126 (2023).
Simpkins, B. S., Dunkelberger, A. D. & Vurgaftman, I. Control, modulation, and analytical descriptions of vibrational strong coupling. Chem. Sov. 123, 5020–5048 (2023).
Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).
Vergauwe, R. M. A. et al. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 58, 15324–15328 (2019).
Hirai, K., Takeda, R., Hutchison, J. A. & Uji-i, H. Modulation of prins cyclization by vibrational strong coupling. Angew. Chem. Int. Ed. 59, 5332–5335 (2020).
Ahn, W., Triana, J. F., Recabal, F., Herrera, F. & Simpkins, B. S. Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities. Science 380, 1165–1168 (2023).
Grafton, A. B. et al. Excited-state vibration-polariton transitions and dynamics in nitroprusside. Nat. Commun. 12, 1–9 (2021).
Xiang, B. et al. Intermolecular vibrational energy transfer enabled by microcavity strong light-matter coupling. Science 368, 665–667 (2020).
Chen, T.-T., Du, M., Yang, Z., Yuen-Zhou, J. & Xiong, W. Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation. Science 378, 790–794 (2022).
George, J. et al. Multiple rabi splittings under ultrastrong vibrational coupling. Phys. Rev. Lett. 117, 1–5 (2016).
Wright, A. D., Nelson, J. C. & Weichman, M. L. Rovibrational polaritons in gas-phase methane. J. Am. Chem. Soc. 145, 5982–5987 (2023).
Lather, J., Bhatt, P., Thomas, A., Ebbesen, T. W. & George, J. Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules. Angew. Chem. Int. Ed. 58, 10635–10638 (2019).
Li, X., Mandal, A. & Huo, P. Theory of mode-selective chemistry through polaritonic vibrational strong coupling. J. Phys. Chem. Lett. 12, 6974–6982 (2021).
Schäfer, C., Flick, J., Ronca, E., Narang, P. & Rubio, A. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity. Nat. Commun. 13, 7817 (2022).
Sun, J. & Vendrell, O. Modification of thermal chemical rates in a cavity via resonant effects in the collective regime. J. Phys. Chem. Lett. 14, 8397–8404 (2023).
Mandal, A. et al. Theoretical advances in polariton chemistry and molecular cavity quantum electrodynamics. Chem. Rev. 123, 9786–9879 (2023).
Dunkelberger, A., Spann, B., Fears, K., Simpkins, B. & Owrutsky, J. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons. Nat. Commun. 7, 13504 (2016).
Wang, D. S., Neuman, T., Yelin, S. F. & Flick, J. Cavity-modified unimolecular dissociation reactions via intramolecular vibrational energy redistribution. J. Phys. Chem. Lett. 13, 3317–3324 (2022).
Yu, Q. & Bowman, J. M. Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling. Nat. Commun. 14, 3527 (2023).
Lindoy, L. P., Mandal, A. & Reichman, D. R. Quantum dynamical effects of vibrational strong coupling in chemical reactivity. Nat. Comm. 14, 2733 (2023).
Schafer, C., Fojt, J., Lindgren, E. & Erhart, P. Machine learning for polaritonic chemistry: accessing chemical kinetics. J. Am. Chem. Soc. 146, 5402–5413 (2024).
Campos-Gonzalez-Angulo, J. A., Ribeiro, R. F. & Yuen-Zhou, J. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 10, 4685 (2019).
Campos-Gonzalez-Angulo, J. A., Ribeiro, R. F. & Yuen-Zhou, J. Generalization of the Tavis–Cummings model for multi-level anharmonic systems. New J. Phys. 23, 063081 (2021).
Mandal, A., Li, X. & Huo, P. Theory of vibrational polariton chemistry in the collective coupling regime. J. Chem. Phys. 156, 014101 (2022).
Li, T. E., Subotnik, J. E. & Nitzan, A. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. Proc. Natl. Acad. Sci. USA 117, 18324–18331 (2020).
Li, T. E. & Hammes-Schiffer, S. QM/MM modeling of vibrational polariton induced energy transfer and chemical dynamics. J. Am. Chem. Soc. 145, 377–384 (2023).
Fregoni, J., Garcia-Vidal, F. J. & Feist, J. Theoretical challenges in polaritonic chemistry. ACS Photonics 9, 1096–1107 (2022).
Anderson, M. C., Woods, E. J., Fay, T. P., Wales, D. J. & Limmer, D. T. On the mechanism of polaritonic rate suppression from quantum transition paths. J. Phys. Chem. Lett. 14, 6888–6894 (2023).
Fiechter, M. R., Runeson, J. E., Lawrence, J. E. & Richardson, J. O. How quantum is the resonance behavior in vibrational polariton chemistry? J. Phys. Chem. Lett. 14, 8261–8267 (2023).
Sidler, D., Schafer, C., Ruggenthaler, M. & Rubio, A. Polaritonic chemistry: collective strong coupling implies strong local modification of chemical properties. J. Phys. Chem. Lett. 12, 508–516 (2021).
Ruggenthaler, M., Sidler, D. & Rubio, A. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 123, 11191–11229 (2023).
Sidler, D. et al. Unraveling a cavity-induced molecular polarization mechanism from collective vibrational strong coupling. J. Phys. Chem. Lett. 15, 5208–5214 (2023).
Lather, J. & George, J. Improving enzyme catalytic efficiency by cooperative vibrational strong coupling of water. J. Phys. Chem. Lett. 12, 379–384 (2021).
Fukushima, T., Yoshimitsu, S. & Murakoshi, K. Inherent promotion of ionic conductivity via collective vibrational strong coupling of water with the vacuum electromagnetic field. J. Am. Chem. Soc. 144, 12177–12183 (2022).
Fukushima, T., Yoshimitsu, S. & Murakoshi, K. Vibrational coupling of water from weak to ultrastrong coupling regime via cavity mode tuning. J. Phys. Chem. C 125, 25832–25840 (2021).
Lieberherr, A. Z., Furniss, S. T., Lawrence, J. E. & Manolopoulos, D. E. Vibrational strong coupling in liquid water from cavity molecular dynamics. J. Chem. Phys. 158, 234106 (2023).
Kadyan, A., Suresh, M. P., Johns, B. & George, J. Understanding the nature of vibro-polaritonic states in water and heavy water. ChemPhysChem 25, e202300560 (2024).
Bakker, H. & Skinner, J. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).
Pakoulev, A., Wang, Z., Pang, Y. & Dlott, D. D. Vibrational energy relaxation pathways of water. Chem. Phys. Lett. 380, 404–410 (2003).
Larsen, O. F. & Woutersen, S. Vibrational relaxation of the H2O bending mode in liquid water. J. Chem. Phys. 121, 12143–12145 (2004).
Lindner, J. et al. Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 421, 329–333 (2006).
Woutersen, S. & Bakker, H. J. Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999).
Zhang, Z., Piatkowski, L., Bakker, H. J. & Bonn, M. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat. Chem. 3, 888–893 (2011).
Yu, C. C. et al. Vibrational couplings and energy transfer pathways of water’s bending mode. Nat. Commun. 11, 1–8 (2020).
Auer, B. M. & Skinner, J. L. IR and Raman spectra of liquid water: theory and interpretation. J. Chem. Phys. 128, 224511 (2008).
Rey, R., Ingrosso, F., Elsaesser, T. & Hynes, J. T. Pathways for H2O bend vibrational relaxation in liquid water. J. Phys. Chem. A 113, 8949–8962 (2009).
Imoto, S., Xantheas, S. S. & Saito, S. Ultrafast dynamics of liquid water: energy relaxation and transfer processes of the OH stretch and the HOH bend. J. Phys. Chem. B 119, 11068–11078 (2015).
Lock, A. J. & Bakker, H. J. Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117, 1708–1713 (2002).
Rey, R., Møller, K. B. & Hynes, J. T. Ultrafast vibrational population dynamics of water and related systems: a theoretical perspective. Chem. Rev. 104, 1915–1928 (2004).
Lawrence, C. P. & Skinner, J. L. Vibrational energy relaxation. J. Chem. Phys. 117, 5827–5838 (2002).
Auer, B., Yang, M. & Skinner, J. Two-dimensional infrared spectroscopy and ultrafast anisotropy decay of water. J. Chem. Phys. 132, 224503 (2010).
Fecko, C., Eaves, J., Loparo, J., Tokmakoff, A. & Geissler, P. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).
Van der Post, S. T. et al. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015).
Ramasesha, K., De Marco, L., Mandal, A. & Tokmakoff, A. Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5, 935–940 (2013).
Ishiyama, T. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water. J. Chem. Phys. 154, 204502 (2021).
Searcy, J.-Q. & Fenn, J. Clustering of water on hydrated protons in a supersonic free jet expansion. J. Chem. Phys. 61, 5282–5288 (1974).
Lagutschenkov, A., Fanourgakis, G. S., Niedner-Schatteburg, G. & Xantheas, S. S. The spectroscopic signature of the “all-surface” to “internally solvated” structural transition in water clusters in the n= 17–21 size regime. J. Chem. Phys. 122, 194310 (2005).
Cui, J., Liu, H. & Jordan, K. D. Theoretical characterization of the (H2O) 21 cluster: application of an n-body decomposition procedure. J. Phys. Chem. B 110, 18872–18878 (2006).
Yang, N. et al. Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage. Proc. Natl. Acad. Sci. USA 117, 26047–26052 (2020).
Yu, Q. & Hammes-Schiffer, S. Multidimensional quantum dynamical simulation of infrared spectra under polaritonic vibrational strong coupling. J. Phys. Chem. Lett. 13, 11253–11261 (2022).
Yu, Q. & Bowman, J. M. Fully quantum simulation of polaritonic vibrational spectra of large cavity-molecule system. J. Chem. Theory Comput. 20, 4278–4287 (2024).
Yu, Q. et al. q-AQUA: a many-mody CCSD (T) water potential, including four-body interactions, demonstrates the quantum nature of water from clusters to the liquid phase. J. Phys. Chem. Lett. 13, 5068–5074 (2022).
Liu, H., Wang, Y. & Bowman, J. M. Quantum calculations of the IR spectrum of liquid water using Ab initio and model potential and dipole moment surfaces and comparison with experiment. J. Chem. Phys. 142, 194502 (2015).
Liu, H., Wang, Y. & Bowman, J. M. Ab initio deconstruction of the vibrational relaxation pathways of dilute HOD in ice Ih. J. Am. Chem. Soc. 136, 5888–5891 (2014).
Bertie, J. E. & Lan, Z. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O (l) at 25 °C between 15,000 and 1 cm-1. Appl. Spectrosc. 50, 1047–1057 (1996).
Wang, Y. & Bowman, J. M. IR spectra of the water hexamer: theory, with inclusion of the monomer bend overtone, and experiment are in agreement. J. Phys. Chem. Lett. 4, 1104–1108 (2013).
Krupp, N. & Vendrell, O. Collective rovibronic dynamics of a diatomic gas coupled by cavity. Phys. Rev. Res. 6, 033134 (2024).
Fan, L.-B. et al. Quantum coherent control of a single molecular-polariton rotation. Phys. Rev. Lett. 130, 043604 (2023).
Fletcher, T., Zhu, A., Lawrence, J. E. & Manolopoulos, D. E. Fast quasi-centroid molecular dynamics. J. Chem. Phys. 155, 231101 (2021).
Musil, F., Zaporozhets, I., Noé, F., Clementi, C. & Kapil, V. Quantum dynamics using path integral coarse-graining. J. Chem. Phys. 157, 181102 (2022).
Althorpe, S. C. Path integral simulations of condensed-phase vibrational spectroscopy. Annu. Rev. of Phys. Chem. 75, 397–420 (2024).
Partridge, H. & Schwenke, D. W. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. J. Chem. Phys. 106, 4618 (1997).
Liu, H., Wang, Y. & Bowman, J. M. Quantum calculations of intramolecular IR spectra of ice models using ab initio potential and dipole moment surfaces. J. Phys. Chem. Lett. 3, 3671–3676 (2012).
Lodi, L., Tennyson, J. & Polyansky, O. L. A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule. J. Chem. Phys. 135, 034113 (2011).
Flick, L. J., Appel, H., Ruggenthaler, M. & Rubio, A. Cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon systems. J. Chem. Theory Comput. 13, 1616–1625 (2017).
Wang, Y. & Bowman, J. M. Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters. J. Chem. Phys. 134, 154510 (2011).
Yu, Q. & Bowman, J. M. High-level quantum calculations of the IR spectra of the Eigen, Zundel, and Ring isomers of H+ (H2O)4 find a single match to experiment. J. Am. Chem. Soc. 139, 10984–10987 (2017).
Kraemer, D. et al. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl. Acad. Sci. USA 105, 437–442 (2008).
Bowman, J. M., Carter, S. & Huang, X. MULTIMODE: a code to calculate rovibrational energies of polyatomic molecules. Int. Rev. Phys. Chem. 22, 533–549 (2003).
Yu, Q. et al. Vibrational Dynamics of Molecules 229–339 (World Scientific Publishing, 2022).
Burcl, R., Carter, S. & Handy, N. C. Infrared intensities from the MULTIMODE code. Chem. Phys. Lett. 380, 237–244 (2003).
Yu, Q., Zhang, D. H. & Bowman, J. M. Source data for theoretical and quantum mechanical deconstruction of vibrational energy transfer pathways modified by collective vibrational strong coupling. https://doi.org/10.5281/zenodo.15681442 (2025).
Yu, Q., Zhang, D. H. & Bowman, J. M. Codes for theoretical and quantum mechanical deconstruction of vibrational energy transfer pathways modified by collective vibrational strong coupling. https://doi.org/10.5281/zenodo.15680998 (2025).