• Harvey, J. et al. Machine learning-based prediction of cognitive outcomes in de novo Parkinson’s disease. npj Parkinsons Dis. 8, 150 (2022).


    Google Scholar
     

  • Kandiah, N. et al. Montreal cognitive assessment for the screening and prediction of cognitive decline in early Parkinson’s disease. Parkinsonism Relat. Disord. 20, 1145–1148 (2014).


    Google Scholar
     

  • Wilson, H. et al. Predict cognitive decline with clinical markers in Parkinson’s disease (PRECODE-1). J. Neural Transm. 127, 51–59 (2020).

    CAS 

    Google Scholar
     

  • Garcia-Diaz, A. I. et al. Cortical thinning correlates of changes in visuospatial and visuoperceptual performance in Parkinson’s disease: a 4-year follow-up. Parkinsonism Relat. Disord. 46, 62–68 (2018).

    CAS 

    Google Scholar
     

  • Luca, A. et al. Cognitive impairment and levodopa induced dyskinesia in Parkinson’s disease: a longitudinal study from the PACOS cohort. Sci. Rep. 11, 867 (2021).

    CAS 

    Google Scholar
     

  • van Laar, T., De Deyn, P. P., Aarsland, D., Barone, P. & Galvin, J. E. Effects of cholinesterase inhibitors in Parkinson’s disease dementia: a review of clinical data. CNS Neurosci. Ther. 17, 428–441 (2011).


    Google Scholar
     

  • Sun, C. & Armstrong, M. J. Treatment of Parkinson’s disease with cognitive impairment: current approaches and future directions. Behav. Sci. 11, 54 (2021).


    Google Scholar
     

  • Bernini, S. et al. A double-blind randomized controlled trial of the efficacy of cognitive training delivered using two different methods in mild cognitive impairment in Parkinson’s disease: preliminary report of benefits associated with the use of a computerized tool. Aging Clin. Exp. Res. 33, 1567–1575 (2020).


    Google Scholar
     

  • Mantovani, E., Zucchella, C., Argyriou, A. A. & Tamburin, S. Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson’s disease: current evidence and future perspectives. Expert Rev. Neurotherapeutics 23, 25–43 (2023).

    CAS 

    Google Scholar
     

  • Loetscher, T. Cognitive training interventions for dementia and mild cognitive impairment in Parkinson’s disease – a cochrane review summary with commentary. NeuroRehabilitation 48, 385–387 (2021).


    Google Scholar
     

  • Carlisle, T. C., Medina, L. D. & Holden, S. K. Original research: initial development of a pragmatic tool to estimate cognitive decline risk focusing on potentially modifiable factors in Parkinson’s disease. Front. Neurosci. 17, 1278817 (2023).


    Google Scholar
     

  • Pavelka, L. et al. Age at onset as stratifier in idiopathic Parkinson’s disease – effect of ageing and polygenic risk score on clinical phenotypes. npj Parkinsons Dis. 8, 102 (2022).

    CAS 

    Google Scholar
     

  • Chung, S. J. et al. Baseline cognitive profile is closely associated with long-term motor prognosis in newly diagnosed Parkinson’s disease. J. Neurol. 268, 4203–4212 (2021).

    CAS 

    Google Scholar
     

  • Yıldız, Z. et al. Relationship between apathy and cognitive functions in Parkinson’s disease. Psychological Appl. Trends https://doi.org/10.36315/2023inpact145 (2023).

  • Goldman, J. G. et al. Diagnosing PD-MCI by MDS Task Force criteria: how many and which neuropsychological tests?. Mov. Disord.30, 402–406 (2014).


    Google Scholar
     

  • Pan, F.-F., Huang, L., Chen, K.-L., Zhao, Q.-H. & Guo, Q.-H. A comparative study on the validations of three cognitive screening tests in identifying subtle cognitive decline. BMC Neurol. 20, 78 (2020).


    Google Scholar
     

  • Cersonsky, T. E. K. et al. Using the Montreal cognitive assessment to identify individuals with subtle cognitive decline. Neuropsychology 36, 373–383 (2022).


    Google Scholar
     

  • Mills, K. A. et al. Cognitive impairment in Parkinson’s disease: Association between patient-reported and clinically measured outcomes. Parkinsonism Relat. Disord. 33, 107–114 (2016).


    Google Scholar
     

  • Rosenblum, S. et al. The Montreal Cognitive Assessment: Is it suitable for identifying mild cognitive impairment in Parkinson’s disease?. Mov. Disord. Clin. Pract. 7, 648–655 (2020).


    Google Scholar
     

  • Marino, S. E. et al. Subjective perception of cognition is related to mood and not performance. Epilepsy Behav. 14, 459–464 (2009).

    CAS 

    Google Scholar
     

  • Goldman, J. G., Stebbins, G. T., Leung, V., Tilley, B. C. & Goetz, C. G. Relationships among cognitive impairment, sleep, and fatigue in Parkinson’s disease using the MDS-UPDRS. Parkinsonism Relat. Disord. 20, 1135–1139 (2014).


    Google Scholar
     

  • Huang, J. et al. Subjective cognitive decline in patients with Parkinson’s disease: an updated review. Front. Aging Neurosci. 15, 1117068 (2023).


    Google Scholar
     

  • Ren, J. et al. Comparing the effects of GBA variants and onset age on clinical features and progression in Parkinson’s disease. CNS Neurosci. Ther. 30, e14387 (2024).

    CAS 

    Google Scholar
     

  • Wang, Y.-X. et al. Associations between cognitive impairment and motor dysfunction in Parkinson’s disease. Brain Behav. 7, e00719 (2017).


    Google Scholar
     

  • Ikeda, M., Kataoka, H. & Ueno, S. Can levodopa prevent cognitive decline in patients with Parkinson’s disease?. Am. J. Neurodegener. Dis. 6, 9–14 (2017).


    Google Scholar
     

  • Loo, R. T. J. et al. Levodopa-induced dyskinesia in Parkinson’s disease: Insights from cross-cohort prognostic analysis using machine learning. Parkinsonism Relat. Disord. 126, 107054 (2024).

    CAS 

    Google Scholar
     

  • Pavelka, L. et al. Luxembourg Parkinson’s study -comprehensive baseline analysis of Parkinson’s disease and atypical parkinsonism. Front. Neurol. 14, 1330321 (2023).


    Google Scholar
     

  • Marek, K. et al. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 95, 629–635 (2011).


    Google Scholar
     

  • Dodet, P. et al. Sleep disorders in Parkinson’s disease, an early and multiple problem. npj Parkinson’s Dis. 10, 46 (2024).


    Google Scholar
     

  • Zhang, Z. et al. Effect of onset age on the levodopa threshold dosage for dyskinesia in Parkinson’s disease. Neurol. Sci. 43, 3165–3174 (2022).


    Google Scholar
     

  • Ciafone, J., Little, B., Thomas, A. J. & Gallagher, P. The neuropsychological profile of mild cognitive impairment in lewy body dementias. J. Int. Neuropsychol. Soc. 26, 210–225 (2020).


    Google Scholar
     

  • Devigili, G. et al. Unraveling autonomic dysfunction in GBA-related Parkinson’s disease. Mov. Disord. Clin. Pract. 10, 1620–1638 (2023).


    Google Scholar
     

  • Kelly, M. J. et al. Predictors of motor complications in early Parkinson’s disease: a prospective cohort study. Mov. Disord. 34, 1174–1183 (2019).


    Google Scholar
     

  • Chen, J. et al. Predictors of cognitive impairment in newly diagnosed Parkinson’s disease with normal cognition at baseline: A 5-year cohort study. Front. Aging Neurosci. 15, 1142558 (2023).

    CAS 

    Google Scholar
     

  • Biundo, R. et al. Cognitive profiling of Parkinson disease patients with mild cognitive impairment and dementia. Parkinsonism Relat. Disord. 20, 394–399 (2014).


    Google Scholar
     

  • Phongpreecha, T. et al. Multivariate prediction of dementia in Parkinson’s disease. npj Parkinson’s Dis. 6, 20 (2020).


    Google Scholar
     

  • Gorji, A. & Jouzdani, A. F. Machine learning for predicting cognitive decline within five years in Parkinson’s disease: comparing cognitive assessment scales with DAT SPECT and clinical biomarkers. PLoS ONE 19, e0304355 (2024).

    CAS 

    Google Scholar
     

  • Palermo, G. et al. Dopamine transporter, age, and motor complications in Parkinson’s disease: a clinical and single-photon emission computed tomography study. Mov. Disord. 35, 1028–1036 (2020).

    CAS 

    Google Scholar
     

  • Xiao, Y. et al. Different associated factors of subjective cognitive complaints in patients with early- and late-onset Parkinson’s disease. Front. Neurol. 12, 749471 (2021).


    Google Scholar
     

  • Zhou, F. et al. Abnormal intra- and inter-network functional connectivity of brain networks in early-onset Parkinson’s disease and late-onset Parkinson’s disease. Front. Aging Neurosci. 15, 1132723 (2023).


    Google Scholar
     

  • Picillo, M. et al. Sex-related longitudinal change of motor, non-motor, and biological features in early Parkinson’s disease. J. Parkinsons Dis. 12, 421–436 (2021).


    Google Scholar
     

  • Beheshti, I., Booth, S. & Ko, J. H. Differences in brain aging between sexes in Parkinson’s disease. npj Parkinsons Dis. 10, 35 (2024).


    Google Scholar
     

  • Iwaki, H. et al. Differences in the presentation and progression of Parkinson’s disease by sex. Mov. Disord. 36, 106–117 (2021).


    Google Scholar
     

  • Chen, H. et al. Performance of the Benton Judgment of Line Orientation test across patients with different types of dementia. J. Alzheimers Dis. 102, 437–448 (2024).


    Google Scholar
     

  • Cholerton, B. et al. Sex differences in progression to mild cognitive impairment and dementia in Parkinson’s disease. Parkinsonism Relat. Disord. 50, 29–36 (2018).


    Google Scholar
     

  • Chiara, P. et al. Cognitive function in Parkinson’s disease: the influence of gender. Basal Ganglia 3, 131–135 (2013).


    Google Scholar
     

  • Bakeberg, M. C. et al. Differential effects of sex on longitudinal patterns of cognitive decline in Parkinson’s disease. J. Neurol. 268, 1903–1912 (2021).


    Google Scholar
     

  • Reekes, T. H. et al. Sex specific cognitive differences in Parkinson disease. npj Parkinsons Dis. 6, 7 (2020).

    CAS 

    Google Scholar
     

  • Almgren, H. et al. Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features. Sci. Rep. 13, 13193 (2023).

    CAS 

    Google Scholar
     

  • Kang, S. H., Lee, J. & Koh, S.-B. Constipation is associated with mild cognitive impairment in patients with de novo Parkinson’s disease. J. Mov. Disord. 15, 38–42 (2021).


    Google Scholar
     

  • Jones, J. D., Rahmani, E., Garcia, E. & Jacobs, J. P. Gastrointestinal symptoms are predictive of trajectories of cognitive functioning in de novo Parkinson’s disease. Parkinsonism Relat. Disord. 72, 7–12 (2020).


    Google Scholar
     

  • Tur, E. K. & Gözke, E. Autonomic symptoms in early-stage Parkinson’s patients and their relationship with cognition and disease parameters. Anatol. Curr. Med J.5, 498–502 (2023).


    Google Scholar
     

  • Nagy, A. V. et al. Cognitive impairment in REM-sleep behaviour disorder and individuals at risk of Parkinson’s disease. Parkinsonism Relat. Disord. 109, 105312 (2023).

    CAS 

    Google Scholar
     

  • Maggi, G., Trojano, L., Barone, P. & Santangelo, G. Sleep disorders and cognitive dysfunctions in Parkinson’s disease: a meta-analytic study. Neuropsychol. Rev. 31, 643–682 (2021).


    Google Scholar
     

  • Cosgrove, J., Alty, J. E. & Jamieson, S. Cognitive impairment in Parkinson’s disease. Postgrad. Med. J. 91, 212–220 (2015).


    Google Scholar
     

  • Ma, C.-H., Ren, N., Xu, J. & Chen, L. Clinical features, plasma neurotransmitter levels and plasma neurohormone levels among patients with early-stage Parkinson’s disease with sleep disorders. Cell Commun. Signal. 23, 144 (2025).


    Google Scholar
     

  • Gibb, W. R. & Lees, A. J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752 (1988).

    CAS 

    Google Scholar
     

  • Marek, K. et al. The Parkinson’s progression markers initiative (PPMI) – establishing a PD biomarker cohort. Ann. Clin. Transl. Neurol. 5, 1460–1477 (2018).

    CAS 

    Google Scholar
     

  • Rosenblum, S., Meyer, S., Richardson, A. & Hassin-Baer, S. Capturing subjective mild cognitive decline in Parkinson’s disease. Brain Sci. 12, 741 (2022).


    Google Scholar
     

  • Azur, M. J., Stuart, E. A., Frangakis, C. & Leaf, P. J. Multiple imputation by chained equations: what is it and how does it work?. Int. J. Methods Psychiatr. Res. 20, 40–49 (2011).


    Google Scholar
     

  • van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Soft. 45, 1–67 (2011).


    Google Scholar
     

  • Luo, J. et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J. 10, 278–291 (2010).

    CAS 

    Google Scholar
     

  • Bolstad, B. M., Irizarry, R. A., Åstrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    CAS 

    Google Scholar
     

  • Kostka, D. & Spang, R. Microarray based diagnosis profits from better documentation of gene expression signatures. PLoS Comput. Biol. 4, e22 (2008).


    Google Scholar
     

  • Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).


    Google Scholar
     

  • Chen, C. et al. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One 6, e17238 (2011).

    CAS 

    Google Scholar
     

  • Lazar, C. et al. Batch effect removal methods for microarray gene expression data integration: a survey. Brief. Bioinform. 14, 469–490 (2012).


    Google Scholar
     

  • Stein, C. K. et al. Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat. BMC Bioinforma. 16, 63 (2015).


    Google Scholar
     

  • Bach, M., Werner, A. & Palt, M. The proposal of undersampling method for learning from imbalanced datasets. Proc. Comput. Sci. 159, 125–134 (2019).


    Google Scholar
     

  • Karami, G., Giuseppe Orlando, M., Delli Pizzi, A., Caulo, M. & Del Gratta, C. Predicting overall survival time in glioblastoma patients using gradient boosting machines algorithm and recursive feature elimination technique. Cancers 13, 4976 (2021).


    Google Scholar
     

  • Wood, I. A., Visscher, P. M. & Mengersen, K. L. Classification based upon gene expression data: bias and precision of error rates. Bioinformatics 23, 1363–1370 (2007).

    CAS 

    Google Scholar
     

  • Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).


    Google Scholar
     

  • Freund, Y. & Schapire, R. A short introduction to boosting. J. Jpn. Soc. Artif. 14, 1612 (1999).


    Google Scholar
     

  • Berk, R. A. Classification and Regression Trees (CART). In Statistical Learning from a Regression Perspective (ed. Berk, R. A.) 157–211 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-40189-4_3.

  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information Processing Systems ((NeurIPS, 2018).

  • Quinlan, J. R. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996).


    Google Scholar
     

  • Tan, Y. S. et al. Fast interpretable greedy-tree sums. Proc. Natl. Acad. Sci. U.S.A. 122, e2310151122 (2025).

  • McTavish, H. et al. Fast Sparse Decision Tree Optimization via reference ensembles. AAAI 36, 9604–9613 (2022).


    Google Scholar
     

  • Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).


    Google Scholar
     

  • Agarwal, A., Tan, Y. S., Ronen, O., Singh, C. & Yu, B. Hierarchical shrinkage: improving the accuracy and interpretability of tree-based models. In International Conference on Machine Learning 111–135 (PMLR, 2022).

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794, https://doi.org/10.1145/2939672.2939785 (2016).

  • He, K. et al. Component-wise gradient boosting and false discovery control in survival analysis with high-dimensional covariates. Bioinformatics 32, 50–57 (2015).


    Google Scholar
     

  • Bertsimas, D., Dunn, J., Gibson, E. & Orfanoudaki, A. Optimal survival trees. Mach. Learn. 111, 2951–3023 (2022).


    Google Scholar
     

  • Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees. Mach. Learn. 63, 3–42 (2006).


    Google Scholar
     

  • Wang, M. et al. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models. BMC Med. Res. Methodol. 22, 284 (2022).


    Google Scholar
     

  • Park, M. Y. & Hastie, T. L1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69, 659–677 (2007).


    Google Scholar
     

  • Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).


    Google Scholar
     

  • Ishwaran, H., Kogalur, U. B., Blackstone, E. H. & Lauer, M. S. Random survival forests. Ann. Appl. Stat. 2, 841–860 (2008).


    Google Scholar
     

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Neural Information Processing Systems (NIPS 2017) 4768–4777 (NIPS, 2017).

  • Sundrani, S. & Lu, J. Computing the hazard ratios associated with explanatory variables using machine learning models of survival data. JCO Clin. Cancer Inform. 5, 364–378 (2021).


    Google Scholar
     

  • Sun, X. & Xu, W. Fast implementation of DeLong’s algorithm for comparing the areas under correlated receiver operating characteristic curves. IEEE Signal Process. Lett. 21, 1389–1393 (2014).


    Google Scholar
     

  • Kang, L., Chen, W., Petrick, N. A. & Gallas, B. D. Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach. Stat. Med. 34, 685–703 (2015).


    Google Scholar
     

  • Ferreira, J. A. & Zwinderman, A. H. On the Benjamini–Hochberg method. Ann. Stat. 34, 1827–1849 (2006).


    Google Scholar
     

  • Corani, G. & Benavoli, A. A Bayesian approach for comparing cross-validated algorithms on multiple data sets. Mach. Learn. 100, 285–304 (2015).


    Google Scholar
     

  • Piovani, D., Sokou, R., Tsantes, A. G., Vitello, A. S. & Bonovas, S. Optimizing clinical decision making with decision curve analysis: Insights for clinical investigators. Healthcare 11, 2244 (2023).


    Google Scholar
     

  • Zhang, Z. et al. Decision curve analysis: a technical note. Ann. Transl. Med. 6, 308 (2018).


    Google Scholar
     

  • Trucano, T. G., Swiler, L. P., Igusa, T., Oberkampf, W. L. & Pilch, M. Calibration, validation, and sensitivity analysis: What’s what. Reliab. Eng. Syst. Saf. 91, 1331–1357 (2006).


    Google Scholar
     

  • Bamber, D. Evaluation of the performance of survival analysis models: Discrimination and calibration measures. In Handbook of Statistics vol. 23 1–25 (Elsevier, 2003).