• Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    PubMed 

    Google Scholar
     

  • Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet 16, 299–311 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, H. Y. et al. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat. Commun. 8, 15464 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS ONE 10, e0120396 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    PubMed 

    Google Scholar
     

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 16, 1089–1128 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Tong, H. et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01595-6 (2023).

  • Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. J. Mol. Cell Biol. 14, mjac022 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, G. et al. Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat. Commun. 13, 1856 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res. 31, 1134–1136 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. et al. Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nat. Commun. 14, 1786 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, eabl9238 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zong, Y. et al. An engineered prime editor with enhanced editing efficiency in plants. Nat. Biotechnol. 40, 1394–1402 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, B. et al. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat. Biotechnol. 40, 1388–1393 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cebrian-Serrano, A. & Davies, B. CRISPR–Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm. Genome 28, 247–261 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kweon, J. et al. Engineered prime editors with PAM flexibility. Mol. Ther. 29, 2001–2007 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, R. et al. Prime editing using CRISPR–Cas12a and circular RNAs in human cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02095-x (2024).

  • Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira da Silva, J. et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat. Commun. 13, 760 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 186, 3983–4002 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, J. et al. Improving prime editing with an endogenous small RNA-binding protein. Nature 628, 639–647 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolin, S. L. & Cedervall, T. The La protein. Annu Rev. Biochem. 71, 375–403 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Stefano, J. E. Purified lupus antigen La recognizes an oligouridylate stretch common to the 3’ termini of RNA polymerase III transcripts. Cell 36, 145–154 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, B. et al. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat. Biotechnol. 42, 1039–1045 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira da Silva, J. et al. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02324-x (2024).

  • Choi, J. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218–226 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, T., Zhang, X. O., Weng, Z. & Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 40, 227–234 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Tao, R. et al. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells. Nucleic Acids Res. 50, 6423–6434 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, R. et al. WT-PE: prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct. Target Ther. 7, 108 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kweon, J. et al. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol. Ther. 31, 249–259 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331–340 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, H. Y. et al. Precise editing of pathogenic nucleotide repeat expansions in iPSCs using paired prime editor. Nucleic Acids Res. 52, 5792–5803 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radford, E. J. et al. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat. Commun. 14, 7702 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kweon, J. et al. A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene 39, 30–35 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C., Li, G., Wu, J., Liang, J. & Wang, X. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biol. 22, 80 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuella-Martin, R. et al. Functional interrogation of DNA damage response variants with base editing screens. Cell 184, 1081–1097 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. et al. High-throughput functional evaluation of human cancer-associated mutations using base editors. Nat. Biotechnol. 40, 874–884 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erwood, S. et al. Saturation variant interpretation using CRISPR prime editing. Nat. Biotechnol. 40, 885–895 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, R., Liu, X., Li, J., Qin, R. & Wei, P. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nat. Plants 7, 888–892 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ren, X. et al. High-throughput PRIME-editing screens identify functional DNA variants in the human genome. Mol. Cell 83, 4633–4645 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould, S. I. et al. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02172-9 (2024).

  • Li, J. et al. Development of a highly efficient prime editor 2 system in plants. Genome Biol. 23, 161 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perroud, P. F. et al. Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato. Plant Sci. 316, 111162 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, R. et al. Development of plant prime-editing systems for precise genome editing. Plant Commun. 1, 100043 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Precise genome modification in tomato using an improved prime editing system. Plant Biotechnol. J. 19, 415–417 (2021).

    PubMed 

    Google Scholar
     

  • Yin, K., Gao, C. & Qiu, J. L. Progress and prospects in plant genome editing. Nat. Plants 3, 17107 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Efficient generation of mouse models with the prime editing system. Cell Discov. 6, 27 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. J. et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 22, 170 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, P. et al. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol. 22, 83 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. et al. Modeling a cataract disorder in mice with prime editing. Mol. Ther. Nucleic Acids 25, 494–501 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, Y. et al. Efficient and precise generation of Tay–Sachs disease model in rabbit by prime editing system. Cell Discov. 7, 50 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. E. et al. Prime editor-mediated correction of a pathogenic mutation in purebred dogs. Sci. Rep. 12, 12905 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schene, I. F. et al. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 11, 5352 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geurts, M. H. et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci. Alliance 4, e202000940 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang, H. et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat. Biomed. Eng. 6, 181–194 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. et al. A time-resolved, multi-symbol molecular recorder via sequential genome editing. Nature 608, 98–107 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Symbolic recording of signalling and cis-regulatory element activity to DNA. Nature 632, 1073–1081 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loveless, T. B. et al. Open-ended molecular recording of sequential cellular events into DNA. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01764-5 (2024).

  • Zhi, S. et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol. Ther. 30, 283–294 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Liang, S. Q. et al. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat. Methods 20, 898–907 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, J. et al. TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nat. Commun. 13, 7975 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. Y., Moon, S. B., Ko, J. H., Kim, Y. S. & Kim, D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 48, 10576–10589 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An, M. et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02078-y (2024).

  • Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57–65 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, G. et al. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors. Nat. Biotechnol. 42, 745–757 (2024).

    CAS 
    PubMed 

    Google Scholar