• Reuter MS, Tawamie H, Buchert R, Hosny Gebril O, Froukh T, Thiel C, Uebe S, Ekici AB, Krumbiegel M, Zweier C, et al. Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiat. 2017;74:293–9.


    Google Scholar
     

  • Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, et al. Ensembl 2021. Nucleic Acids Res. 2021;49:D884–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Uniprot: The Universal Protein Knowledgebase In 2021. Nucleic Acids Res. 2021; 49: D480-D489.

  • Hausler MG, Begemann M, Lidov HG, Kurth I, Darras BT, Elbracht M. A novel homozygous splice-site mutation in the Sptbn4 gene causes axonal neuropathy without intellectual disability. Eur J Med Genet. 2020;63:103826.

    PubMed 

    Google Scholar
     

  • Han B, Zhou R, Xia C, Zhuang X. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons. Proc Natl Acad Sci USA. 2017;114:E6678–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta. 2014;1838:620–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Knierim E, Gill E, Seifert F, Morales-Gonzalez S, Unudurthi SD, Hund TJ, Stenzel W, Schuelke M. A recessive mutation in Beta-Iv-Spectrin (Sptbn4) associates with congenital myopathy, neuropathy, and central deafness. Hum Genet. 2017;136:903–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang CC, Ortiz-González XR, Yum SW, Gill SM, White A, Kelter E, Seaver LH, Lee S, Wiley G, Gaffney PM, et al. Βiv spectrinopathies cause profound intellectual disability, congenital hypotonia, and motor axonal neuropathy. Am J Hum Genet. 2018;102:1158–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, Shamseldin HE, Alzahrani F, Patel N, Ibrahim N, et al. Expanding the genetic heterogeneity of intellectual disability. Hum Genet. 2017;136:1419–29.

    PubMed 

    Google Scholar
     

  • Tian J, Vemula SR, Xiao J, Valente EM, Defazio G, Petrucci S, Gigante AF, Rudzińska-Bar M, Wszolek ZK, Kennelly KD, et al. Whole-exome sequencing for variant discovery in blepharospasm. Mol Genet Genomic Med. 2018;6:601–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N, Alowain M, Alzaidan H, Alsayed M, Subhani S, et al. Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet. 2019;104:1182–201.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buelow M, Sussmuth D, Smith LD, Aryani O, Castiglioni C, Stenzel W, Bertini E, Schuelke M, Knierim E. Novel Bi-Allelic variants expand the Sptbn4-related genetic and phenotypic spectrum. Eur J Hum Genet. 2021;29:1121–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belkheir AM, Reunert J, Elpers C, Van Den Heuvel L, Rodenburg R, Seelhofer A, Rust S, Jeibmann A, Frosch M, Marquardt T. Severe form of Ssiv-spectrin deficiency with mitochondrial dysfunction and cardiomyopathy—a case report. Front Neurol. 2021;12:643805.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pehlivan D, Bayram Y, Gunes N, Coban Akdemir Z, Shukla A, Bierhals T, Tabakci B, Sahin Y, Gezdirici A, Fatih JM, et al. The genomics of arthrogryposis, a complex trait: candidate genes and further evidence for oligogenic inheritance. Am J Hum Genet. 2019;105:132–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner TN, Wilfert AB, Bakken TE, Bernier RA, Pepper MR, Zhang Z, Torene RI, Retterer K, Eichler EE. Sex-based analysis of de novo variants in neurodevelopmental disorders. Am J Hum Genet. 2019;105:1274–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitra I, Huang B, Mousavi N, Ma N, Lamkin M, Yanicky R, Shleizer-Burko S, Lohmueller KE, Gymrek M. Patterns of de novo tandem repeat mutations and their role in autism. Nature. 2021;589:246–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Chang X, Qu H-Q, Tian L, Glessner J, Qu J, Li D, Qiu H, Sleiman P, Hakonarson H. Rare recurrent variants in noncoding regions impact attention-deficit hyperactivity disorder (Adhd) gene networks in children of both African American and European American ancestry. Genes. 2021;12(2):310. https://doi.org/10.3390/genes12020310.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Peng J, Liang D, Ye X, Xu N, Chen L, Yan D, Zhang H, Xiao B, Qiu W, et al. Genome sequencing demonstrates high diagnostic yield in children with undiagnosed global developmental delay/intellectual disability: a prospective study. Hum Mutat. 2022;43:568–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Chang X, Glessner J, Qu H, Tian L, Li D, Nguyen K, Sleiman PMA, Hakonarson H. Association of rare recurrent copy number variants with congenital heart defects based on next-generation sequencing data from family trios. Front Genet. 2019;10:819.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almuhaizea M, Almass R, Alhargan A, Albader A, Medico Salsench E, Howaidi J, Ihinger J, Karachunski P, Begtrup A, Segura Castell M, et al. Truncating mutations in Yif1b Cause a progressive encephalopathy with various degrees of mixed movement disorder, microcephaly, and epilepsy. Acta Neuropathol. 2020;139:791–4.

    PubMed 

    Google Scholar
     

  • Al-Muhaizea MA, Alquait L, Alrasheed A, Alharbi S, Albader AA, Almass R, Albakheet A, Alhumaidan A, Alrasheed MM, Colak D, et al. Pyrostigmine therapy in a patient with Vamp1-related congenital myasthenic syndrome. Neuromuscul Disord. 2020;30:611–5.

    PubMed 

    Google Scholar
     

  • Sanderson LE, Lanko K, Alsagob M, Almass R, Al-Ahmadi N, Najafi M, Al-Muhaizea MA, Alzaidan H, Aldhalaan H, Perenthaler E, et al. Bi-allelic variants in hops complex subunit Vps41 cause cerebellar ataxia and abnormal membrane trafficking. Brain. 2021;144:769–80.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidahmed MZ, Hamad MH, Albakheet A, Elmalik SA, Aldrees A, Al-Sufayan J, Alorainy I, Ghozzi IM, Colak D, Salih MA, et al. Ancient founder mutation in Rubcn: a second unrelated family confirms salih ataxia (Scar15). Bmc Neurol. 2020;20:207.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comprehensive gene panels provide advantages over clinical exome sequencing for mendelian diseases. Genome Biol. 2015; 16:134.

  • Chelban V, Alsagob M, Kloth K, Chirita-Emandi A, Vandrovcova J, Maroofian R, Davagnanam I, Bakhtiari S, Alsayed MD, Rahbeeni Z, et al. Genetic and phenotypic characterization of Nkx6-2-related spastic ataxia and hypomyelination. Eur J Neurol. 2020;27:334–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Parkinson NJ, Olsson CL, Hallows JL, Mckee-Johnson J, Keogh BP, Noben-Trauth K, Kujawa SG, Tempel BL. Mutant Beta-Spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat Genet. 2001;29:61–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Lacas-Gervais S, Morest DK, Solimena M, Rasband MN. Betaiv spectrins are essential for membrane stability and the molecular organization of nodes of ranvier. J Neurosci. 2004;24:7230–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komada M, Soriano P. [Beta]Iv-spectrin regulates sodium channel clustering through Ankyrin-G at axon initial segments and nodes of ranvier. J Cell Biol. 2002;156:337–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Mut JV, Aso E, Panayotis N, Lott I, Dierssen M, Rabano A, Urdinguio RG, Fernandez AF, Astudillo A, Martin-Subero JI, et al. DNA methylation map of mouse and human brain identifies target genes in alzheimer’s disease. Brain. 2013;136:3018–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieto-Marín P, Tinaquero D, Utrilla RG, Cebrián J, González-Guerra A, Crespo-García T, Cámara-Checa A, Rubio-Alarcón M, Dago M, Alfayate S, et al. Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or long Qt syndrome. Cardiovasc Res. 2022;118:1046–60.

    PubMed 

    Google Scholar
     

  • Saifetiarova J, Shi Q, Paukert M, Komada M, Bhat MA. Reorganization of destabilized nodes of ranvier in βiv spectrin mutants uncovers critical timelines for nodal restoration and prevention of motor paresis. J Neurosci. 2018;38:6267–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel NJ, Nassal DM, Greer-Short AD, Unudurthi SD, Scandling BW, Gratz D, Xu X, Kalyanasundaram A, Fedorov VV, Accornero F et al. Βiv-Spectrin/Stat3 complex regulates fibroblast phenotype, fibrosis, and cardiac function. Jci Insight. 2019; 4.

  • Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V. Ankyring is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol. 1998;143:1295–304.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sert O, Ding X, Zhang C, Mi R, Hoke A, Rasband MN. Postsynaptic Beta1 spectrin maintains Na(+) channels at the neuromuscular junction. J Physiol. 2024;602:1127–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Joshi A, Liu Y, Sert O, Haddix SG, Teliska LH, Rasband A, Rodney GG, Rasband MN. Ankyrin-dependent Na(+) channel clustering prevents neuromuscular synapse fatigue. Curr Biol. 2021;31(3810–3819):E3814.


    Google Scholar