• Stegeman, G. & Segev, M. Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999).


    Google Scholar
     

  • Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973).

    ADS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    ADS 

    Google Scholar
     

  • Nakahara, M. Geometry, Topology and Physics (CRC, 2018).

  • Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    MathSciNet 

    Google Scholar
     

  • Essmann, U. & Träuble, H. The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24, 526–527 (1967).

    ADS 

    Google Scholar
     

  • Williams, G. A. & Packard, R. E. Photographs of quantized vortex lines in rotating He ii. Phys. Rev. Lett. 33, 280–283 (1974).

    ADS 

    Google Scholar
     

  • Parts, Ü. et al. Phase diagram of vortices in superfluid 3He-A. Phys. Rev. Lett. 75, 3320–3323 (1995).

    ADS 

    Google Scholar
     

  • Karimäki, J. M. & Thuneberg, E. V. Periodic vortex structures in superfluid 3He-A. Phys. Rev. B 60, 15290–15301 (1999).

    ADS 

    Google Scholar
     

  • Takeuchi, H. Spin-current instability at a magnetic domain wall in a ferromagnetic superfluid: a generation mechanism of eccentric fractional skyrmions. Phys. Rev. A 105, 013328 (2022).

    ADS 

    Google Scholar
     

  • Thomson, W. XLVI. Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871).


    Google Scholar
     

  • von Helmholtz, H. On the discontinuous movements of fluids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 337–346 (1868).


    Google Scholar
     

  • Smyth, W. D. & Moum, J. N. Ocean mixing by Kelvin-Helmholtz instability. Oceanography 25, 140–149 (2012).


    Google Scholar
     

  • Delamere, P. A. & Bagenal, F. Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010).


    Google Scholar
     

  • Blaauwgeers, R. et al. Shear flow and Kelvin-Helmholtz instability in superfluids. Phys. Rev. Lett. 89, 155301 (2002).

    ADS 

    Google Scholar
     

  • Volovik, G. E. On the Kelvin-Helmholtz instability in superfluids. JETP Lett. 75, 418–422 (2002).

    ADS 

    Google Scholar
     

  • Finne, A. et al. Dynamics of vortices and interfaces in superfluid 3He. Rep. Prog. Phys. 69, 3157 (2006).

    ADS 

    Google Scholar
     

  • Takeuchi, H., Suzuki, N., Kasamatsu, K., Saito, H. & Tsubota, M. Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates. Phys. Rev. B 81, 094517 (2010).

    ADS 

    Google Scholar
     

  • Suzuki, N., Takeuchi, H., Kasamatsu, K., Tsubota, M. & Saito, H. Crossover between Kelvin-Helmholtz and counter-superflow instabilities in two-component Bose-Einstein condensates. Phys. Rev. A 82, 063604 (2010).

    ADS 

    Google Scholar
     

  • Baggaley, A. W. & Parker, N. G. Kelvin-Helmholtz instability in a single-component atomic superfluid. Phys. Rev. A 97, 053608 (2018).

    ADS 

    Google Scholar
     

  • Kokubo, H., Kasamatsu, K. & Takeuchi, H. Pattern formation of quantum Kelvin-Helmholtz instability in binary superfluids. Phys. Rev. A 104, 023312 (2021).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Kokubo, H., Kasamatsu, K. & Takeuchi, H. Vorticity distribution in quantum Kelvin–Helmholtz instability of binary Bose–Einstein condensates. J. Low Temp. Phys. 208, 410–417 (2022).

    ADS 

    Google Scholar
     

  • Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58–62 (2022).

    ADS 

    Google Scholar
     

  • Hernandez-Rajkov, D. et al. Connecting shear flow and vortex array instabilities in annular atomic superfluids. Nat. Phys. 20, 939–944 (2024).


    Google Scholar
     

  • Volovik, G. E. Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices. Phys.-Uspekhi 58, 897 (2015).

    ADS 

    Google Scholar
     

  • Parts, Ü. et al. Vortex sheet in rotating superfluid 3He-A. Phys. Rev. Lett. 72, 3839–3842 (1994).

    ADS 

    Google Scholar
     

  • Parts, Ü. et al. Bragg reflection from equidistant planes of vortex sheets in rotating 3He-A. Pisma ZhETF 59, 816–820 (1994).


    Google Scholar
     

  • Eltsov, V. B. et al. Transitions from vortex lines to sheets: interplay of topology and dynamics in an anisotropic superfluid. Phys. Rev. Lett. 88, 065301 (2002).

    ADS 

    Google Scholar
     

  • Hänninen, R. et al. Structure of the surface vortex sheet between two rotating 3He superfluids. Phys. Rev. Lett. 90, 225301 (2003).

    ADS 

    Google Scholar
     

  • Kasamatsu, K., Tsubota, M. & Ueda, M. Vortex phase diagram in rotating two-component Bose-Einstein condensates. Phys. Rev. Lett. 91, 150406 (2003).

    ADS 

    Google Scholar
     

  • Kasamatsu, K. & Tsubota, M. Vortex sheet in rotating two-component Bose-Einstein condensates. Phys. Rev. A 79, 023606 (2009).

    ADS 

    Google Scholar
     

  • Williamson, L. A. & Blakie, P. B. Universal coarsening dynamics of a quenched ferromagnetic spin-1 condensate. Phys. Rev. Lett. 116, 025301 (2016).

    ADS 

    Google Scholar
     

  • Huh, S. et al. Universality class of a spinor Bose-Einstein condensate far from equilibrium. Nat. Phys. 20, 402–408 (2024).


    Google Scholar
     

  • Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of superfluid helium-3. Phys. Rev. Lett. 36, 594–597 (1976).

    ADS 

    Google Scholar
     

  • Salomaa, M. M. & Volovik, G. E. Quantized vortices in superfluid 3He. Rev. Mod. Phys. 59, 533–613 (1987).

    ADS 

    Google Scholar
     

  • Takeuchi, H. Quantum elliptic vortex in a nematic-spin Bose-Einstein condensate. Phys. Rev. Lett. 126, 195302 (2021).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Takeuchi, H. Phase diagram of vortices in the polar phase of spin-1 Bose-Einstein condensates. Phys. Rev. A 104, 013316 (2021).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Isoshima, T., Machida, K. & Ohmi, T. Quantum vortex in a spinor Bose-Einstein condensate. J. Phys. Soc. Jpn 70, 1604 (2001).

    ADS 

    Google Scholar
     

  • Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K. & Phillips, W. D. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102, 170401 (2009).

    ADS 

    Google Scholar
     

  • Kwon, W. J., Moon, G., Choi, J.-y, Seo, S. W. & Shin, Y.-i Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. Phys. Rev. A 90, 063627 (2014).

    ADS 

    Google Scholar
     

  • Kobyakov, D., Bezett, A., Lundh, E., Marklund, M. & Bychkov, V. Turbulence in binary Bose-Einstein condensates generated by highly nonlinear Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Phys. Rev. A 89, 013631 (2014).

    ADS 

    Google Scholar
     

  • Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose-Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).

    ADS 

    Google Scholar
     

  • Navon, N., Gaunt, A. L., Robert, P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    ADS 

    Google Scholar
     

  • Gałka, M. et al. Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett. 129, 190402 (2022).

    ADS 

    Google Scholar
     

  • Hong, D. et al. Spin-driven stationary turbulence in spinor Bose-Einstein condensates. Phys. Rev. A 108, 013318 (2023).

    ADS 

    Google Scholar
     

  • Fujimoto, K. & Tsubota, M. Spin turbulence in a trapped spin-1 spinor Bose-Einstein condensate. Phys. Rev. A 85, 053641 (2012).

    ADS 

    Google Scholar
     

  • Tsubota, M., Aoki, Y. & Fujimoto, K. Spin-glass-like behavior in the spin turbulence of spinor Bose-Einstein condensates. Phys. Rev. A 88, 061601 (2013).

    ADS 

    Google Scholar
     

  • Schweikhard, V. et al. Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates. Phys. Rev. Lett. 93, 210403 (2004).

    ADS 

    Google Scholar
     

  • Kasamatsu, K., Tsubota, M. & Ueda, M. Vortex molecules in coherently coupled two-component Bose-Einstein condensates. Phys. Rev. Lett. 93, 250406 (2004).

    ADS 

    Google Scholar
     

  • Huh, S., Kim, K., Kwon, K. & Choi, J.-y Observation of a strongly ferromagnetic spinor Bose-Einstein condensate. Phys. Rev. Res. 2, 033471 (2020).


    Google Scholar
     

  • Kawaguchi, Y. & Ueda, M. Spinor Bose-Einstein condensates. Phys. Rep. 520, 253–381 (2012).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Choi, J.-y, Seo, S. W., Kwon, W. J. & Shin, Y.-i Probing phase fluctuations in a 2D degenerate Bose gas by free expansion. Phys. Rev. Lett. 109, 125301 (2012).

    ADS 

    Google Scholar
     

  • Kawaguchi, Y., Saito, H., Kudo, K. & Ueda, M. Spontaneous magnetic ordering in a ferromagnetic spinor dipolar Bose-Einstein condensate. Phys. Rev. A 82, 043627 (2010).

    ADS 

    Google Scholar
     

  • Gudnason, S. B. & Speight, J. M. Realistic classical binding energies in the ω-Skyrme model. J. High Energy Phys. 2020, 184 (2020).

    MathSciNet 

    Google Scholar
     

  • Leiler, G. & Rezzolla, L. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity. Phys. Rev. D 73, 044001 (2006).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).


    Google Scholar
     

  • Shin, Y. et al. Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate. Phys. Rev. Lett. 93, 160406 (2004).

    ADS 

    Google Scholar
     

  • Weiss, L. S. et al. Controlled creation of a singular spinor vortex by circumventing the Dirac belt trick. Nat. Commun. 10, 4772 (2019).

    ADS 

    Google Scholar
     

  • Becker, C. et al. Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates. Nat. Phys. 4, 496–501 (2008).


    Google Scholar