Lord, C., Elsabbagh, M., Baird, G. & Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 392 (10146), 508–520 (2018).
Al-Dewik, N. et al. Overview and introduction to autism spectrum disorder (ASD). Adv. Neurobiol. 24, 3–42 (2020).
Zeidan, J. et al. Global prevalence of autism: A systematic review update. Autism Res. 15 (5), 778–790 (2022).
Al-Beltagi, M. Autism medical comorbidities. World J. Clin. Pediatr. 10 (3), 15–28 (2021).
Devitt, N. M., Gallagher, L. & Reilly, R. B. Autism spectrum disorder (ASD) and fragile X syndrome (FXS): two overlapping disorders reviewed through Electroencephalography-What can be interpreted from the available information?? Brain Sci. 5 (2), 92–117 (2015).
Pan, P. Y., Bölte, S., Kaur, P., Jamil, S. & Jonsson, U. Neurological disorders in autism: A systematic review and meta-analysis. Autism 25 (3), 812–830 (2021).
Agana, M., Frueh, J., Kamboj, M., Patel, D. R. & Kanungo, S. Common metabolic disorder (inborn errors of metabolism) concerns in primary care practice. Ann. Transl Med. 6 (24), 469 (2018).
Jyonouchi, H. Autism spectrum disorders and allergy: observation from a pediatric allergy/immunology clinic. Expert Rev. Clin. Immunol. 6 (3), 397–411 (2010).
Wang, J., Ma, B., Wang, J., Zhang, Z. & Chen, O. Global prevalence of autism spectrum disorder and its Gastrointestinal symptoms: A systematic review and meta-analysis. Front. Psychiatry. 13, 963102 (2022).
Fulceri, F. et al. Gastrointestinal symptoms and behavioral problems in preschoolers with autism spectrum disorder. Dig. Liver Dis. 48 (3), 248–254 (2016).
Xu, G. et al. Association of food allergy and other allergic conditions with autism spectrum disorder in children. JAMA Netw. Open. 1 (2), e180279 (2018).
Bresnahan, M. et al. Association of maternal report of infant and toddler Gastrointestinal symptoms with autism: evidence from a prospective birth cohort. JAMA Psychiatry. 72 (5), 466–474 (2015).
Niesler, B. & Rappold, G. A. Emerging evidence for gene mutations driving both brain and gut dysfunction in autism spectrum disorder. Mol. Psychiatry. 26 (5), 1442–1444 (2021).
Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448 (7152), 427–434 (2007).
Lee, M. et al. Association of autism spectrum disorders and inflammatory bowel disease. J. Autism Dev. Disord. 48 (5), 1523–1529 (2018).
Kim, J. Y. et al. Association between autism spectrum disorder and inflammatory bowel disease: A systematic review and meta-analysis. Autism Res. 15 (2), 340–352 (2022).
Imamura, A. et al. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. J. Neural Transm (Vienna). 127 (11), 1501–1515 (2020).
Sadik, A. et al. Parental inflammatory bowel disease and autism in children. Nat. Med. 28 (7), 1406–1411 (2022).
Clappison, E., Hadjivassiliou, M. & Zis, P. Psychiatric manifestations of coeliac disease, a systematic review and Meta-Analysis. Nutrients ;12(1) ,142 (2020).
Lebwohl, B. et al. Psychiatric disorders in patients with a diagnosis of Celiac disease during childhood from 1973 to 2016. Clin. Gastroenterol. Hepatol. 19 (10), 2093–101e13 (2021).
Lau, N. M. et al. Markers of Celiac disease and gluten sensitivity in children with autism. PLoS One. 8 (6), e66155 (2013).
Bennabi, M. et al. HLA-class II haplotypes and autism spectrum disorders. Sci. Rep. 8 (1), 7639 (2018).
Jia, X. et al. A deep learning framework for predicting disease-gene associations with functional modules and graph augmentation. BMC Bioinform. 25 (1), 214 (2024).
Malekpour, M., Jafari, A., Kashkooli, M., Salarikia, S. R. & Negahdaripour, M. A systems biology approach for discovering the cellular and molecular aspects of psychogenic non-epileptic seizure. Front. Psychiatry ;14, 1116892 (2023).
Malekpour, M., Salarikia, S. R., Kashkooli, M. & Asadi-Pooya, A. A. The genetic link between systemic autoimmune disorders and Temporal lobe epilepsy: A bioinformatics study. Epilepsia Open. 8 (2), 509–516 (2023).
Xu, Y. et al. Identification of the shared gene signatures between autism spectrum disorder and epilepsy via bioinformatic analysis. Comput. Math. Methods Med. 2022, 9883537 (2022).
Arenella, M. et al. Genetic relationship between the immune system and autism. Brain Behav. Immun. Health. 34, 100698 (2023).
Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48 (D1), D845–D55 (2019).
Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51 (D1), D977–d85 (2023).
Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50 (D1), D988–D95 (2021).
Berglund, L. et al. A genecentric human protein atlas for expression profiles based on antibodies. Mol. Cell. Proteom. 7 (10), 2019–2027 (2008).
Uhlén, M. et al. Tissue-based map of the human proteome. Sci 347 (6220), 1260419 (2015).
Main, P. A., Angley, M. T., Thomas, P., O’Doherty, C. E. & Fenech, M. Folate and methionine metabolism in autism: a systematic review. Am. J. Clin. Nutr. 91 (6), 1598–1620 (2010).
Liew, S. C. & Gupta, E. D. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 58 (1), 1–10 (2015).
Li, Y. et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr. 20 (1), 449 (2020).
Shaik Mohammad, N. et al. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr Genet. 26 (6), 281–286 (2016).
Rai, V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab. Brain Dis. 31 (4), 727–735 (2016).
Guo, B. Q., Li, H. B. & Ding, S. B. Blood homocysteine levels in children with autism spectrum disorder: an updated systematic review and meta-analysis. Psychiatry Res. 291, 113283 (2020).
Guo, T., Chen, H., Liu, B., Ji, W. & Yang, C. Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese Han population. Genet. Test. Mol. Biomarkers. 16 (8), 968–973 (2012).
Pu, D., Shen, Y. & Wu, J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 6 (5), 384–392 (2013).
Schmidt, R. J. et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood autism risks from genetics and Environment) case-control study. Am. J. Clin. Nutr. 96 (1), 80–89 (2012).
Wilcox, G. M. & Mattia, A. R. Celiac sprue, hyperhomocysteinemia, and MTHFR gene variants. J. Clin. Gastroenterol. 40 (7), 596–601 (2006).
Hozyasz, K. K., Mostowska, A., Szaflarska-Poplawska, A., Lianeri, M. & Jagodzinski, P. P. Polymorphic variants of genes involved in homocysteine metabolism in Celiac disease. Mol. Biol. Rep. 39 (3), 3123–3130 (2012).
Dickey, W. et al. Homocysteine and related B-vitamin status in coeliac disease: effects of gluten exclusion and histological recovery. Scand. J. Gastroenterol. 43 (6), 682–688 (2008).
Hadithi, M. et al. Effect of B vitamin supplementation on plasma homocysteine levels in Celiac disease. World J. Gastroenterol. 15 (8), 955–960 (2009).
Oussalah, A., Guéant, J. L. & Peyrin-Biroulet, L. Meta-analysis: hyperhomocysteinaemia in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 34 (10), 1173–1184 (2011).
Mahmud, N. et al. Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with inflammatory bowel disease, and its clinical implications. Gut 45 (3), 389–394 (1999).
Karban, A., Feldman, T., Waterman, M., Leiba, R. & Efrati, E. The association of the MTHFR C677T polymorphism with inflammatory bowel diseases in the Israeli Jewish population: an example of genetic heterogeneity. Med. (Baltim). 95 (51), e5611 (2016).
Steluti, J. et al. Unmetabolized folic acid is associated with TNF-α, IL-1β and IL-12 concentrations in a population exposed to mandatory food fortification with folic acid: a cross-sectional population-based study in Sao paulo, Brazil. Eur. J. Nutr. 60 (2), 1071–1079 (2021).
Hoxha, B. et al. Folic acid and autism: A systematic review of the current state of knowledge. Cells ;10(8) 1976 (2021).
Zhang, X. et al. Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol. Med. 160, 552–565 (2020).
Chen, S. et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation. 14 (1), 187 (2017).
Lai, W. K. & Kan, M. Y. Homocysteine-Induced endothelial dysfunction. Ann. Nutr. Metab. 67 (1), 1–12 (2015).
Ferretti, A., Parisi, P. & Villa, M. P. The role of hyperhomocysteinemia in neurological features associated with coeliac disease. Med. Hypotheses. 81 (4), 524–531 (2013).
Esse, R., Barroso, M., Tavares de Almeida, I. & Castro, R. The contribution of homocysteine metabolism disruption to endothelial dysfunction: State-of-the-Art. Int. J. Mol. Sci. ;20 (4), 867 (2019).
Mehta, R., Kuhad, A. & Bhandari, R. Nitric oxide pathway as a plausible therapeutic target in autism spectrum disorders. Expert Opin. Ther. Targets. 26 (7), 659–679 (2022).
Rana, T. Influence and implications of the molecular paradigm of nitric oxide underlying inflammatory reactions of the Gastrointestinal tract of dog: A major hallmark of inflammatory bowel disease. Inflamm. Bowel Dis. 28 (8), 1280–1288 (2022).
Liu, X. et al. Oxidative stress in autism spectrum Disorder-Current progress of mechanisms and biomarkers. Front. Psychiatry. 13, 813304 (2022).
Peyrin-Biroulet, L. et al. Vascular and cellular stress in inflammatory bowel disease: revisiting the role of homocysteine. Am. J. Gastroenterol. 102 (5), 1108–1115 (2007).
Schicho, R., Marsche, G. & Storr, M. Cardiovascular complications in inflammatory bowel disease. Curr. Drug Targets. 16 (3), 181–188 (2015).
Croall, I. D., Hoggard, N. & Hadjivassiliou, M. Gluten and autism spectrum disorder. Nutrients ;13(2), 572 (2021).
Manivasagam, T. et al. Role of oxidative stress and antioxidants in autism. Adv. Neurobiol. 24, 193–206 (2020).
Wirth, J. A., Jensen, K. A., Post, P. L., Bement, W. M. & Mooseker, M. S. Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail. J. Cell. Sci. 109 (Pt 3), 653–661 (1996).
Almandil, N. B. et al. Integration of transcriptome and exome genotyping identifies significant variants with autism spectrum disorder. Pharmaceuticals (Basel) ;15(2) 158 (2022).
Alsubaie, L. M. et al. Risk Y-haplotypes and pathogenic variants of Arab-ancestry boys with autism by an exome-wide association study. Mol. Biol. Rep. 47 (10), 7623–7632 (2020).
Liao, N., Chen, M. L., Zhao, H. & Xie, Z. F. Association between the MYO9B polymorphisms and Celiac disease risk: a meta-analysis. Int. J. Clin. Exp. Med. 8 (9), 14916–14925 (2015).
Latiano, A. et al. The association of MYO9B gene in Italian patients with inflammatory bowel diseases. Aliment. Pharmacol. Ther. 27 (3), 241–248 (2008).
Hanley, P. J., Vollmer, V. & Bähler, M. Class IX myosins: motorized RhoGAP signaling molecules. Adv. Exp. Med. Biol. 1239, 381–389 (2020).
Monsuur, A. J. et al. Myosin IXB variant increases the risk of Celiac disease and points toward a primary intestinal barrier defect. Nat. Genet. 37 (12), 1341–1344 (2005).
Hegan, P. S. et al. Mice lacking myosin ixb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum. Cytoskeleton (Hoboken). 73 (4), 163–179 (2016).
Chandhoke, S. K. & Mooseker, M. S. A role for myosin ixb, a motor-RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol. Biol. Cell. 23 (13), 2468–2480 (2012).
Diakonova, M., Bokoch, G. & Swanson, J. A. Dynamics of cytoskeletal proteins during Fcgamma receptor-mediated phagocytosis in macrophages. Mol. Biol. Cell. 13 (2), 402–411 (2002).
Long, H. et al. Myo9b and RICS modulate dendritic morphology of cortical neurons. Cereb. Cortex. 23 (1), 71–79 (2013).
Faust, T. E., Gunner, G. & Schafer, D. P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 22 (11), 657–673 (2021).
Liu, Z. et al. The motorized RhoGAP myosin IXb (Myo9b) in leukocytes regulates experimental autoimmune encephalomyelitis induction and recovery. J. Neuroimmunol. 282, 25–32 (2015).
Petrelli, F., Pucci, L. & Bezzi, P. Astrocytes and microglia and their potential link with autism spectrum disorders. Front. Cell. Neurosci. 10, 21 (2016).
Matta, S. M., Hill-Yardin, E. L. & Crack, P. J. The influence of neuroinflammation in autism spectrum disorder. Brain Behav. Immun. 79, 75–90 (2019).
Anand, N., Gorantla, V. R. & Chidambaram, S. B. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders. Cells ;12(1), 54 (2022).