• Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A et al. (2013) Potential for evolutionary responses to climate change – evidence from tree populations. Glob Change Biol 19:1645–1661


    Google Scholar
     

  • Asuka Y, Tani N, Tsumura Y, Tomaru N (2004) Development and characterization of microsatellite markers for Fagus crenata Blume. Mol Ecol Notes 4:101–103

    CAS 

    Google Scholar
     

  • Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628

    PubMed 

    Google Scholar
     

  • Bacles CFE, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evol 59:979–990


    Google Scholar
     

  • Bontemps A, Klein EK, Oddou-Muratorio S (2013) Shift of spatial patterns during early recruitment in Fagus sylvatica: Evidence from seed dispersal estimates based on genotypic data. Ecol Manag 305:67–76


    Google Scholar
     

  • Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T (2007) Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. Ecol Manag 247:98–106


    Google Scholar
     

  • Burger K, Müller M, Gailing O (2018) Characterization of EST-SSRs for European beech (Fagus sylvatica L.) and their transferability to Fagus orientalis Lipsky, Castanea dentata. Silvae Genet 67:127–132


    Google Scholar
     

  • Chybicki IJ, Trojankiewicz M, Oleksa A, Dzialuk A, Burczyk J (2009) Isolation-by-distance within naturally established populations of European beech (Fagus sylvatica). Botany 87:791–798


    Google Scholar
     

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin) 6:80–92

    CAS 
    PubMed 

    Google Scholar
     

  • Ciocirlan MIC, Ciocîrlan E, Radu GR, Chira D, Gailing O, Vînătoru C et al. (2024b) Exploring the association between adaptive and growth traits and within-individual genetic diversity in common beech (Fagus sylvatica). Ann Res 67:151–166


    Google Scholar
     

  • Ciocîrlan MIC, Curtu A, Radu R (2022) Predicting leaf phenology in forest tree species using UAVs and satellite images: A case study for European beech (Fagus sylvatica L.). Remote Sens 14:6198


    Google Scholar
     

  • Ciocîrlan MIC, Ciocîrlan E, Chira D, Radu GR, Păcurar VD, Beșliu E et al. (2024a) Large differences in bud burst and senescence between low- and high-altitude European beech populations along an altitudinal transect in the south-eastern Carpathians. Forests 15:468


    Google Scholar
     

  • Csilléry K, Lalagüe H, Vendramin GG, González-Martínez SC, Fady B, Oddou-Muratorio S (2014) Detecting short spatial scale local adaptation and epistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations. Mol Ecol 23:4696–4708

    PubMed 

    Google Scholar
     

  • Cuervo-Alarcon L, Arend M, Müller M, Sperisen C, Finkeldey R, Krutovsky KV (2018) Genetic variation and signatures of natural selection in populations of European beech (Fagus sylvatica L.) along precipitation gradients. Tree Genet Genomes 14:84


    Google Scholar
     

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davey J, Hohenlohe P, Etter PD, Boone JQ, Catchen JM, Blaxter NL (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    CAS 
    PubMed 

    Google Scholar
     

  • Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM (2013) An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One 8:e85024

    PubMed 
    PubMed Central 

    Google Scholar
     

  • De-Lucas AI, Gonzalez-Martinez SC, Vendramin GG, Hidalgo E, Heuertz M (2009) Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton. Mol Ecol 18:4564–4576

    CAS 
    PubMed 

    Google Scholar
     

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    CAS 
    PubMed 

    Google Scholar
     

  • Ehrlich PR, Raven PH (1969) Differentiation of populations: Gene flow seems to be less important in speciation than the neo-Darwinians thought. Science 165:1228–32

    CAS 
    PubMed 

    Google Scholar
     

  • EEA (2021). European Environment Agency. Biogeographical regions

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    CAS 
    PubMed 

    Google Scholar
     

  • Fady B, Aravanopoulos F, Benavides R, González-Martínez SC, Grivet D, Lascoux M, Lindner M, Rellstab C, Valladares F, Vinceti B (2020) Genetics to the rescue: managing forests sustainably in a changing world. Tree Genet Genomes 16:80


    Google Scholar
     

  • Finkeldey R, Ziehe M (2004) Genetic implications of silvicultural regimes. Ecol Manag 197:231–244


    Google Scholar
     

  • Fox G (2003) Assortative mating and plant phenology: evolutionary and practical consequences. Evol Ecol Res 5:1–18


    Google Scholar
     

  • Gapare WJ, Aitken SN (2005) Strong spatial genetic structure in peripheral but not core populations of Sitka spruce [Picea sitchensis (Bong.) Carr.]. Mol Ecol 14:2659–2667

    CAS 
    PubMed 

    Google Scholar
     

  • Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv 1207:3907


    Google Scholar
     

  • Gauzere J, Klein EK, Oddou-Muratorio S (2013) Ecological determinants of mating system within and between three Fagus sylvatica populations along an elevational gradient. Mol Ecol 22:5001–5015

    PubMed 

    Google Scholar
     

  • Gelmi-Candusso TA, Heymann EW, Heer K (2017) Effects of zoochory on the spatial genetic structure of plant populations. Mol Ecol 26:5896–5910

    PubMed 

    Google Scholar
     

  • Gömöry D, Zhelev P, Brus R (2020) The Balkans: a genetic hotspot but not a universal colonization source for trees. Plant Syst Evol 306:5


    Google Scholar
     

  • Goncalves AL, Garc¡a MV et al. (2022) Spatial genetic structure and mating system in forest tree populations from seasonally dry tropical forests: a review. Tree Genet Genomes 18:18


    Google Scholar
     

  • Götz J, Rajora OP, Gailing O (2022) Genetic structure of natural northern range-margin mainland, peninsular, and island populations of Northern Red Oak (Quercus rubra L.). Front Ecol Evol 10:907414


    Google Scholar
     

  • Hardy OJ, Vekemans X (2002) SPAGeDi: A versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620


    Google Scholar
     

  • Heywood JS (1991) Spatial analysis of genetic variation in plant populations. Annu Rev Ecol Syst 22:335–355


    Google Scholar
     

  • Hirao A, Kudo G (2008) The effect of segregation of flowering time on fine-scale spatial genetic structure in an alpine-snowbed herb Primula cuneifolia. Heredity 100:424–430

    CAS 
    PubMed 

    Google Scholar
     

  • Hoban S, Arntzen JA, Bruford MW, Godoy JA, Rus Hoelzel A, Segelbacher G et al. (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7:984–998

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höhn M, Major E, Avdagić A, Bielak K, Bosela M, Coll L et al. (2021) Local characteristics of the standing genetic diversity of European beech with high within-region differentiation at the eastern part of the range. Can J Res 51:1791–1798


    Google Scholar
     

  • Hope RM (2013). Rmisc: ryan miscellaneous. R Packag version 1

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    PubMed 

    Google Scholar
     

  • Jiménez-Ramírez A, Grivet D, Robledo-Arnuncio JJ (2021) Measuring recent effective gene flow among large populations in Pinus sylvestris: Local pollen shedding does not preclude substantial long-distance pollen immigration. PloS One 16:e0255776

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordano P, Godoy JA (2000) RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Mol Ecol 9:1293–1305

    CAS 
    PubMed 

    Google Scholar
     

  • Jump A, Rico L, Coll M, Penuelas J (2012) Wide variation in spatial genetic structure between natural populations of the European beech (Fagus sylvatica) and its implications for SGS comparability. Heredity 108:633–639

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jump AS, Peñuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936

    CAS 
    PubMed 

    Google Scholar
     

  • Kawecki TJ (2008) Adaptation to marginal habitats. Annu Rev Ecol Evol Syst 39:321–342


    Google Scholar
     

  • Kubisiak T, Carey D, Burdine C, Koch J (2009) Characterization of ten EST-based polymorphic SSR loci isolated from American beech, Fagus grandifolia Ehrh. Permanent genetic resources note added to Molecular Ecology Resources. Mol Ecol Resour 9:1460–1466

    PubMed 

    Google Scholar
     

  • Lander TA, Klein EK, Roig A, Oddou-Muratorio S (2021) Weak founder effects but significant spatial genetic imprint of recent contraction and expansion of European beech populations. Heredity 126:491–504

    CAS 
    PubMed 

    Google Scholar
     

  • Lepais O, Chancerel E, Boury C, Salin F, Manicki A, Taillebois L et al. (2020) Fast sequence-based microsatellite genotyping development workflow. PeerJ 8:e9085

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loiselle B, Sork V, Nason J, Graham C (1995) Spatial genetic-structure of a tropical understory shrub, Psychotria Officinalis (Rubiaceae). Am J Bot 82:1420–1425


    Google Scholar
     

  • Magri D (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463


    Google Scholar
     

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D et al (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences N phytol 171:199–221

    CAS 

    Google Scholar
     

  • Major EI, Höhn M, Avanzi C, Fady B, Heer K, Opgenoorth L et al. (2021) Fine-scale spatial genetic structure across the species range reflects recent colonization of high elevation habitats in silver fir (Abies alba Mill.). Mol Ecol 30:5247–5265

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millerón M, López, de Heredia U, Lorenzo Z, Perea R, Dounavi A, Alonso J et al. (2012) Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.). Plant Ecol 213:1715–1728


    Google Scholar
     

  • Mishra B, Ulaszewski B, Meger J, Aury J-M, Bodénès C, Lesur-Kupin I et al (2022) (2022) A chromosome-level genome assembly of the European Beech (Fagus sylvatica) reveals anomalies for organelle DNA integration, repeat content and distribution of SNPs. Front Genet 12:691058

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moracho E, Moreno G, Jordano P, Hampe A (2016) Unusually limited pollen dispersal and connectivity of Pedunculate oak (Quercus robur) refugial populations at the species’ southern range margin. Mol Ecol 25:3319–3331

    CAS 
    PubMed 

    Google Scholar
     

  • Mosca E, Di Pierro EA, Budde KB, Neale DB, González-Martínez SC (2018) Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species. Mol Ecol 27:647–658

    PubMed 

    Google Scholar
     

  • Nardin M, Musch B, Rousselle Y, Guérin V, Sanchez L, Rossi JP et al. (2015) Genetic differentiation of European larch along an altitudinal gradient in the French Alps. Ann Sci 72:517–527


    Google Scholar
     

  • Nielsen PC, Schaffalitzky de Muckadell M (1954) Flower observations and controlled pollinations in Fagus. Z für Forstgenet und Forstpflanzenzücht 3:6–17

  • Oddou-Muratorio S, Klein EK, Vendramin GG, Fady B (2011) Spatial vs. temporal effects on demographic and genetic structures: the roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica. Mol Ecol 20:1997–2010

    PubMed 

    Google Scholar
     

  • Oddou-Muratorio S, Bontemps A, Klein EK, Chybicki I, Vendramin GG, Suyama Y (2010) Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. Ecol Manag 259:2151–2159


    Google Scholar
     

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr 17:152–163


    Google Scholar
     

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC et al. (2001) Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938


    Google Scholar
     

  • Paffetti D, Travaglini D, Buonamici A, Nocentini S, Giovanni Giuseppe V, Giannini R et al. (2012) The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. Ecol Manag 284:34–44


    Google Scholar
     

  • Pandey M, Rajora OP (2012a) Genetic diversity and differentiation of core vs. peripheral populations of eastern white cedar, Thuja occidentalis (Cupressaceae)†. Am J Bot 99:690–699

    PubMed 

    Google Scholar
     

  • Pandey M, Rajora OP (2012b) Higher fine-scale genetic structure in peripheral than core populations of a long-lived and mixed-mating conifer – eastern white cedar (Thuja occidentalis L.). BMC Evol Biol 12:48

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastorelli R, Smulders MJM, VAN’T Westende WPC, Vosman B, Giannini R, Vettori C et al. (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3:76–78

    CAS 

    Google Scholar
     

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pellerin M, Delestrade A, Mathieu G, Rigault O, Yoccoz NG (2012) Spring tree phenology in the Alps: effects of air temperature, altitude and local topography. Eur J Res 131:1957–1965


    Google Scholar
     

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Ann Rev Ecol Evol Syst 37:187–214


    Google Scholar
     

  • Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K et al. (2012) Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity 108:322–331

    CAS 
    PubMed 

    Google Scholar
     

  • Piotti A, Leonardi S, Heuertz M, Buiteveld J, Geburek T, Gerber S et al (2013) Within-population genetic structure in Beech (Fagus sylvatica L.) stands characterized by different disturbance histories: Does forest management simplify population substructure? PLoS One 8:e73391

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD (2017) Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev 92:1877–1909

    PubMed 

    Google Scholar
     

  • Pluess AR, Weber P (2012) Drought-adaptation potential in Fagus sylvatica: Linking moisture availability with genetic diversity and dendrochronology. PLoS One 7:e33636

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pluess AR, Frank A, Heiri C, Lalagüe H, Vendramin GG, Oddou-Muratorio S (2016) Genome–environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica. N Phytol 210:589–601

    CAS 

    Google Scholar
     

  • Porcher E, Lande R (2016) Inbreeding depression under mixed outcrossing, self-fertilization and sib-mating. BMC Evol Biol 16:105

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Postolache D, Oddou-Muratorio S, Vajana E, Bagnoli F, Guichoux E, Hampe A et al. (2021) Genetic signatures of divergent selection in European beech (Fagus sylvatica L.) are associated with the variation in temperature and precipitation across its distribution range. Mol Ecol 30:5029–5047

    PubMed 

    Google Scholar
     

  • Premoli AC(2003) Isozyme polymorphisms provide evidence of clinal variation with elevation in Nothofagus pumilio. J Hered 94:218–226

    CAS 
    PubMed 

    Google Scholar
     

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. (2007) PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quiroga MP, Premoli AC (2007) Genetic patterns in Podocarpus parlatorei reveal the long-term persistence of cold-tolerant elements in the southern Yungas. J Biogeogr 34:447–455


    Google Scholar
     

  • R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). For Ecol Manag 319:138–149


    Google Scholar
     

  • Randin CF, Paulsen J, Vitasse Y, Kollas C, Wohlgemuth T, Zimmermann NE et al. (2013) Elevational and latitudinal limits of deciduous trees. Glob Ecol Biogeogr 22:913–923


    Google Scholar
     

  • Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Hered 94:13–22

    CAS 

    Google Scholar
     

  • Rochette NC, Rivera-Colón AG, Catchen JM (2019) Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol 28:4737–4754

    CAS 
    PubMed 

    Google Scholar
     

  • Sandurska E, Ulaszewski B, Meyza K, Sztupecka E, Burczyk J (2024) Factors determining fine-scale spatial genetic structure within coexisting populations of common beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), and sessile oak (Q. petraea (Matt.) Liebl.). Ann Sci 81:3


    Google Scholar
     

  • Scaglione D, Pinosio S, Marroni F, Centa E, Fornasiero A, Magris G et al. (2019) Single primer enrichment technology as a tool for massive genotyping: a benchmark on black poplar and maize. Ann Bot 124:543–552

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith T, Heger A, Sudbery I (2017) UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 27:491–499

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soulé ME (1973) The epistasis cycle: A theory of marginal populations. Annu Rev Ecol Evol Syst 4:165–187


    Google Scholar
     

  • Stefanini C, Csilléry K, Ulaszewski B, Burczyk J, Schaepman ME, Schuman MC (2022) A novel synthesis of two decades of microsatellite studies on European beech reveals decreasing genetic diversity from glacial refugia. Tree Genet Genomes 19:3

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theraroz A, Guadaño-Peyrot C, Archambeau J, Pinosio S, Bagnoli F, Piotti A et al. (2024) The genetic consequences of population marginality: A case study in maritime pine. Divers Distrib 30:e13910


    Google Scholar
     

  • Torroba-Balmori P, Budde KB et al. (2017) Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PLoS One 12:e0182515

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Oosterhout C, Hutchinson WiF, Wilis DM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538


    Google Scholar
     

  • Vekemans X, Hardy O (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    CAS 
    PubMed 

    Google Scholar
     

  • Vitasse Y, Delzon S, Dufrêne E, Pontailler J-Y, Louvet J-M, Kremer A et al. (2009) Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses?. Agric Meteorol 149:735–744


    Google Scholar
     

  • Vitasse Y, Ursenbacher S, Klein G, Bohnenstengel T, Chittaro Y, Delestrade A et al. (2021) Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol Rev 96:1816–1835

    PubMed 

    Google Scholar
     

  • Vornam B, Decarli N, Gailing O (2004) Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) Based on microsatellite markers. Conserv Genet 5:561–570

    CAS 

    Google Scholar
     

  • Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution (N Y) 38:1358–1370

    CAS 

    Google Scholar
     

  • Wickham H, Chang W, Wickham MH (2016) Package ‘ggplot2’. Creat Elegant Data Vis using Gramm Graph Version 2:1–189


    Google Scholar
     

  • Willner W, Di Pietro R, Bergmeier E (2009) Phytogeographical evidence for postglacial dispersal limitation of European beech forest species. Ecography 32:1011–1018


    Google Scholar
     

  • Wright S (1949) The genetical structure of populations. Ann Eugen 15:323–354.


    Google Scholar
     

  • Zhou H-P, Chen J (2010) Spatial genetic structure in an understorey dioecious fig species: the roles of seed rain, seed and pollen-mediated gene flow, and local selection. J Ecol 98:1168–1177


    Google Scholar