• Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article 

    Google Scholar
     

  • Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2023).

    Article 

    Google Scholar
     

  • Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • de Abajo, F. J. G. et al. Roadmap for photonics with 2D materials. ACS Photonics 12, 3961–4095 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • He, M. et al. Ultrahigh-resolution, label-free hyperlens imaging in the mid-IR. Nano Lett. 21, 7921–7928 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Autore, M., Mester, L., Goikoetxea, M. & Hillenbrand, R. Substrate matters: surface-polariton enhanced infrared nanospectroscopy of molecular vibrations. Nano Lett. 19, 8066–8073 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, M. et al. Guided mid-IR and near-IR light within a hybrid hyperbolic-material/silicon waveguide heterostructure. Adv. Mater. 33, 2004305 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Foteinopoulou, S., Devarapu, G. C. R., Subramania, G. S., Krishna, S. & Wasserman, D. Phonon-polaritonics: enabling powerful capabilities for infrared photonics. Nanophotonics 8, 2129–2175 (2019).

    Article 

    Google Scholar
     

  • Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mancini, A. et al. Near-field retrieval of the surface phonon polariton dispersion in free-standing silicon carbide thin films. ACS Photonics 9, 3696–3704 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dubrovkin, A. M., Qiang, B., Krishnamoorthy, H. N. S., Zheludev, N. I. & Wang, Q. J. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun. 9, 1762 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Pérez, G., Voronin, K. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).

    Article 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • de Oliveira, T. V. A. G. et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal. Adv. Mater. 33, e2005777 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).

    Article 

    Google Scholar
     

  • Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, J. et al. In-plane hyperbolic phonon-polaritons in van der Waals nanocrystals. Adv. Opt. Mater. 11, 2202048 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Álvarez‐Pérez, G. et al. Infrared permittivity of the biaxial van der Waals semiconductor α‐MoO3 from near‐ and far‐field correlative studies. Adv. Mater. 32, 1908176 (2020).

    Article 

    Google Scholar
     

  • Nörenberg, T. et al. Germanium monosulfide as a natural platform for highly anisotropic THz polaritons. ACS Nano 16, 20174–20185 (2021).

    Article 

    Google Scholar
     

  • Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat. Commun. 13, 1374 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu, R. et al. Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO3 membranes. Nat. Commun. 15, 4743 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kowalski, R. A. et al. Mid‐ to far‐infrared anisotropic dielectric function of HfS2 and HfSe2. Adv. Opt. Mater. 10, 2200933 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Neal, S. N., Li, S., Birol, T. & Musfeldt, J. L. Chemical bonding and Born charge in 1T-HfS2. npj 2D Mater. Appl. 5, 45 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Folland, T. G., Nordin, L., Wasserman, D. & Caldwell, J. D. Probing polaritons in the mid- to far-infrared. J. Appl. Phys. 125, 191102 (2019).

    Article 

    Google Scholar
     

  • Huber, A., Ocelic, N., Taubner, T. & Hillenbrand, R. Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling. Nano Lett. 6, 774–778 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article 

    Google Scholar
     

  • Kehr, S. C., Döring, J., Gensch, M., Helm, M. & Eng, L. M. FEL-based near-field infrared to THz nanoscopy. Synchrotron Radiat. News 30, 31–35 (2017).

    Article 

    Google Scholar
     

  • Helm, M. et al. The ELBE infrared and THz facility at Helmholtz-Zentrum Dresden-Rossendorf. Eur. Phys. J. Plus 138, 158 (2023).

    Article 

    Google Scholar
     

  • Álvarez-Cuervo, J. et al. Unidirectional ray polaritons in twisted asymmetric stacks. Nat. Commun. 15, 9042 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Passler, N. C. et al. Layer-resolved resonance intensity of evanescent polariton modes in anisotropic multilayers. Phys. Rev. B 107, 235426 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Passler, N. C. et al. Strong coupling of epsilon-near-zero phonon polaritons in polar dielectric heterostructures. Nano Lett. 18, 4285–4292 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Lee, I.-H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Menabde, S. G. et al. Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. Sci. Adv. 8, 627 (2022).

    Article 

    Google Scholar
     

  • Jäckering, L. et al. Tailoring hBN’s phonon polaritons with the plasmonic phase-change material In3SbTe2. Preprint at https://doi.org/10.48550/arXiv.2504.18418 (2025).

  • Barra-Burillo, M. et al. Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime. Nat. Commun. 12, 6206 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller, N. S., Barros, E. B. & Reich, S. Ultrastrong light-matter coupling in materials. Preprint at https://doi.org/10.48550/arXiv.2505.06373 (2025).

  • Herzig Sheinfux, H. et al. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nikitin, A. Y. et al. Nanofocusing of hyperbolic phonon polaritons in a tapered boron nitride slab. ACS Photonics 3, 924–929 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Q., Zhang, L., Bampoulis, P. & Zandvliet, H. J. W. Nanoscale investigation of defects and oxidation of HfSe2. J. Phys. Chem. C 122, 25498–25505 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tiwald, T. E. et al. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys. Rev. B 60, 11464–11474 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Collins, A. T., Lightowlers, E. C. & Dean, P. J. Lattice vibration spectra of aluminum nitride. Phys. Rev. 158, 833–838 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Torii, K. et al. An attenuated-total-reflection study on the surface phonon-polariton in GaN. J. Phys.: Condens. Matter 12, 7041 (2000).

    CAS 

    Google Scholar
     

  • Bakker, J. M., Aleese, L. M., Meijer, G. & von Helden, G. Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase. Phys. Rev. Lett. 91, 203003 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Adato, R., Yanik, A. A., Wu, C.-H., Shvets, G. & Altug, H. Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays. Opt. Express 18, 4526 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rephaeli, E., Raman, A. & Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pan, Z. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 7, 680–690 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Novoselov, K. S. et al. Electric field in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A 362, 787–805 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Passler, N. C. & Paarman, A. Generalized 4×4 matrix algorithm for light propagation in anisotropic stratified media (MATLAB files). Zenodo https://doi.org/10.5281/zenodo.601496 (2019).