• Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Article 

    Google Scholar
     

  • Janmohamed, A. et al. Dietary quality and associated factors among women of reproductive age in six sub-Saharan African countries. Nutrients 16, 1115 (2024).

    Article 

    Google Scholar
     

  • Stevens, G. A., Beal, T., Mbuya, M. N. N., Luo, H. & Neufeld, L. M. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 10, e1590–e1599 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Headey, D., Hirvonen, K. & Hoddinott, J. Animal sourced foods and child stunting. Am. J. Agric Econ. 100, 1302–1319 (2018).

    Article 

    Google Scholar
     

  • van Jaarsveld, P. et al. Nutrient content of eight African leafy vegetables and their potential contribution to dietary reference intakes. J. Food Compos. Anal. 33, 77–84 (2014).

    Article 

    Google Scholar
     

  • Keats, E. C. et al. Effective interventions to address maternal and child malnutrition: an update of the evidence. Lancet Child Adolesc. Health 5, 367–384 (2021).

    Article 

    Google Scholar
     

  • Tan, X., Tan, P. Y., Gong, Y. Y. & Moore, J. B. Overnutrition is a risk factor for iron, but not for zinc or vitamin A deficiency in children and young people: a systematic review and meta-analysis. BMJ Glob. Health https://doi.org/10.1136/bmjgh-2024-015135 (2024).

  • Reerink, I. et al. Experiences and lessons learned for delivery of micronutrient powders interventions. Matern. Child Nutr. https://doi.org/10.1111/mcn.12495 (2017).

  • Bloor, S. R., Schutte, R. & Hobson, A. R. Oral iron supplementation—gastrointestinal side effects and the impact on the gut microbiota. Microbiol. Res. 12, 491–502 (2021).

    Article 

    Google Scholar
     

  • Gupta, S., Brazier, A. K. M. & Lowe, N. M. Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J. Hum. Nutr. Diet. 33, 624–643 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hall, A. G. & King, J. C. Zinc fortification: current trends and strategies. Nutrients 14, 3895 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hombali, A. S., Solon, J. A., Venkatesh, B. T., Nair, N. S. & Peña-Rosas, J. P. Fortification of staple foods with vitamin A for vitamin A deficiency. Cochrane Database of Systematic Reviews https://doi.org/10.1002/14651858.CD010068.pub2 (2019).

  • Kaur, N., Agarwal, A. & Sabharwal, M. Food fortification strategies to deliver nutrients for the management of iron deficiency anaemia. Curr. Res. Food Sci. 5, 2094–2107 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Carducci, B., Jägermeyr, J., Ruane, A. C. & Fanzo, J. Rising to the challenge: producing and sustaining a nutrient-dense and climate-resilient food basket for all. One Earth 6, 1443–1446 (2023).

    Article 

    Google Scholar
     

  • Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ebi, K. L. et al. Nutritional quality of crops in a high CO2 world: an agenda for research and technology development. Environ. Res. Lett. 16, 064045 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, C. A. & Lundgren, M. R. Nutritional quality of photosynthetically diverse crops under future climates. Plants People Planet 6, 1272–1283 (2024).

    Article 

    Google Scholar
     

  • Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation?. Glob. Change Biol. 27, 27–49 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article 

    Google Scholar
     

  • Zabel, F. et al. Large potential for crop production adaptation depends on available future varieties. Glob. Change Biol. 27, 3870–3882 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Y. et al. Influences of extreme weather events on the carbon to nitrogen ratios of major staple crops. Sci. Total Environ. 969, 178943 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Mbow, C. et al. in Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 5 (IPCC, 2019).

  • Bezner Kerr, R. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 713–906 (IPCC, Cambridge Univ. Press, 2022).

  • McGrath, J. M. & Lobell, D. B. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ. 36, 697–705 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Uddling, J., Broberg, M. C., Feng, Z. & Pleijel, H. Crop quality under rising atmospheric CO2. Curr. Opin. Plant Biol. 45, 262–267 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 221, 32–49 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Halpern, M., Yermiyahu, U. & Bar-Tal, A. in Advances in Agronomy Vol. 176 (ed. Sparks, D. L.) 1–34 (Academic Press, 2022).

  • Pérez, P., Morcuende, R., Martı́n del Molino, I. & Martı́nez-Carrasco, R. Diurnal changes of Rubisco in response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradient tunnels. Environ. Exp. Bot. 53, 13–27 (2005).

    Article 

    Google Scholar
     

  • Bunce, J. A. Effects of water vapor pressure difference on leaf gas exchange in potato and sorghum at ambient and elevated carbon dioxide under field conditions. Field Crops Res. 82, 37–47 (2003).

    Article 

    Google Scholar
     

  • Dong, J., Gruda, N., Lam, S. K., Li, X. & Duan, Z. Effects of elevated CO2 on nutritional quality of vegetables: a review. Front. Plant Sci. 9, 924 (2018).

    Article 

    Google Scholar
     

  • Triboi, E., Martre, P., Girousse, C., Ravel, C. & Triboi-Blondel, A.-M. Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. Eur. J. Agron. 25, 108–118 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO2] and temperature of canopy air in a paddy from East China. N. Phytol. 222, 726–734 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wei, L. et al. Responses of rice qualitative characteristics to elevated carbon dioxide and higher temperature: implications for global nutrition. J. Sci. Food Agric. 101, 3854–3861 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kong, X., Hou, R. & Yang, G. Effects of climatic warming on the starch and protein content of winter wheat grain under conservation tillage in the North China Plain. Soil Tillage Res. 238, 105995 (2024).

    Article 

    Google Scholar
     

  • Martre, P. et al. Global needs for nitrogen fertilizer to improve wheat yield under climate change. Nat. Plants 10, 1081–1090 (2024).

    Article 
    CAS 

    Google Scholar
     

  • He, M. & Dijkstra, F. A. Drought effect on plant nitrogen and phosphorus: a meta-analysis. N. Phytol. 204, 924–931 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bista, D. R., Heckathorn, S. A., Jayawardena, D. M. & Boldt, J. K. Effect of drought and carbon dioxide on nutrient uptake and levels of nutrient-uptake proteins in roots of barley. Am. J. Bot. 107, 1401–1409 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, R. et al. Implications of soil waterlogging for crop quality: a meta-analysis. Eur. J. Agron. 161, 127395 (2024).

    Article 
    CAS 

    Google Scholar
     

  • George, T. S. et al. Bottom-up perspective—the role of roots and rhizosphere in climate change adaptation and mitigation in agroecosystems. Plant Soil 500, 297–323 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tian, Y. et al. Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses. Nat. Commun. 14, 864 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Neumann, R. B., Seyfferth, A. L., Teshera-Levye, J. & Ellingson, J. Soil warming increases arsenic availability in the rice rhizosphere. Agric. Environ. Lett. 2, 170006 (2017).

    Article 

    Google Scholar
     

  • Oishy, M. N. et al. Unravelling the effects of climate change on the soil–plant–atmosphere interactions: a critical review. Soil Environ. Health 3, 100130 (2025).

    Article 

    Google Scholar
     

  • Ferdush, J., Paul, V., Varco, J., Jones, K. & Sasidharan, S. M. Consequences of elevated CO2 on soil acidification, cation depletion, and inorganic carbon: a column-based experimental investigation. Soil Tillage Res. 234, 105839 (2023).

    Article 

    Google Scholar
     

  • Miner, G. L. et al. Global change impacts on mineral nutritional quality of cereal grains: coordinated datasets and analyses to advance a systems-based understanding. Field Crops Res. 310, 109338 (2024).

    Article 

    Google Scholar
     

  • Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    Article 

    Google Scholar
     

  • Ruane, A. C. et al. An AgMIP framework for improved agricultural representation in integrated assessment models. Environ. Res. Lett. 12, 125003 (2017).

    Article 

    Google Scholar
     

  • Hoogenboom, G. et al. in Advances in Crop Modeling for a Sustainable Agriculture (ed. Boote, K. J.) 173–216 (Burleigh Dodds Science Publishing, 2019).

  • Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).

    Article 

    Google Scholar
     

  • Dar, E. A., Hoogenboom, G. & Shah, Z. A. Meta analysis on the evaluation and application of DSSAT in South Asia and China: recent studies and the way forward. J. Agrometeorol. 25, 185–204 (2023).

    Article 

    Google Scholar
     

  • Hopf, A. et al. Development and improvement of the CROPGRO-Strawberry model. Sci. Hortic. 291, 110538 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hopf, A. et al. Dynamic prediction of preharvest strawberry quality traits as a function of environmental factors. HortScience 57, 1336–1355 (2022).

    Article 

    Google Scholar
     

  • Tai, A. P. K., Sadiq, M., Pang, J. Y. S., Yung, D. H. Y. & Feng, Z. Impacts of surface ozone pollution on global crop yields: comparing different ozone exposure metrics and incorporating co-effects of CO2. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2021.534616 (2021).

  • Wang, X. & Mauzerall, D. L. Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos. Environ. 38, 4383–4402 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Clemensen, A. K. et al. Perennial forages influence mineral and protein concentrations in annual wheat cropping systems. Crop Sci. 61, 2080–2089 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fan, M.-S. et al. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 22, 315–324 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Garvin, D. F., Welch, R. M. & Finley, J. W. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J. Sci. Food Agric. 86, 2213–2220 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Guttieri, M. J. et al. Variation for grain mineral concentration in a diversity panel of current and historical great plains hard winter wheat germplasm. Crop Sci. 55, 1035–1052 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Miner, G. L. et al. Wheat grain micronutrients and relationships with yield and protein in the U.S. Central Great Plains. Field Crops Res. 279, 108453 (2022).

    Article 

    Google Scholar
     

  • Murphy, K. M., Reeves, P. G. & Jones, S. S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 163, 381–390 (2008).

    Article 

    Google Scholar
     

  • Liu, H. et al. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Res. 156, 151–160 (2014).

    Article 

    Google Scholar
     

  • Brunetti, G., Kodešová, R. & Šimůnek, J. Modeling the translocation and transformation of chemicals in the soil-plant continuum: a dynamic plant uptake module for the HYDRUS model. Water Resour. Res. 55, 8967–8989 (2019).

    Article 

    Google Scholar
     

  • Office of Global Food Security The Vision for Adapted Crops and Soils (US Department of State, 2025); https://2021-2025.state.gov/the-vision-for-adapted-crops-and-soils/

  • Alae-Carew, C. et al. The impact of environmental changes on the yield and nutritional quality of fruits, nuts and seeds: a systematic review. Environ. Res. Lett. 15, 023002 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Scheelbeek, P. F. D. et al. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl Acad. Sci. USA 115, 6804–6809 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hoogenboom, G. et al. in Improving Soil Fertility Recommendations in Africa Using the Decision Support System for Agrotechnology Transfer (DSSAT) (eds Kihara, J. et al.) 9–18 (Springer, 2012).

  • White, J. W. et al. Integrated description of agricultural field experiments and production: the ICASA Version 2.0 data standards. Comput. Electron. Agric. 96, 1–12 (2013).

    Article 

    Google Scholar
     

  • Giulia, S. et al. The effect of climatic factors on nutrients in foods: evidence from a systematic map. Environ. Res. Lett. 15, 113002 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chumley, H. & Hewlings, S. The effects of elevated atmospheric carbon dioxide [CO2] on micronutrient concentration, specifically iron (Fe) and zinc (Zn) in rice; a systematic review. J. Plant Nutr. 43, 1571–1578 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fernando, N. et al. Wheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping system. J. Cereal Sci. 56, 684–690 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hein, N. T. et al. Grain micronutrient composition and yield components in field-grown wheat are negatively impacted by high night-time temperature. Cereal Chem. 99, 615–624 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Högy, P. et al. Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biol.11, 60–69 (2009).

    Article 

    Google Scholar
     

  • Hu, S. et al. Response of rice grain quality to elevated atmospheric CO2 concentration: a meta-analysis of 20-year FACE studies. Field Crops Res. 284, 108562 (2022).

    Article 

    Google Scholar
     

  • Li, X., Jiang, D. & Liu, F. Dynamics of amino acid carbon and nitrogen and relationship with grain protein in wheat under elevated CO2 and soil warming. Environ. Exp. Bot. 132, 121–129 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pour-Aboughadareh, A. et al. Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability 12, 5610 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sattar, A. et al. Individual and combined effect of terminal drought and heat stress on allometric growth, grain yield and quality of bread wheat. Pak. J. Bot. https://doi.org/10.30848/pjb2020-2(5) (2020).

  • Tomás, D., Rodrigues, J. C., Viegas, W. & Silva, M. Assessment of high temperature effects on grain yield and composition in bread wheat commercial varieties. Agronomy 10, 499 (2020).

  • Wang, Y., Frei, M., Song, Q. & Yang, L. The impact of atmospheric CO2 concentration enrichment on rice quality—a research review. Acta Ecol. Sin. 31, 277–282 (2011).

    Article 

    Google Scholar
     

  • Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).

    Article 

    Google Scholar
     

  • Ziska, L. H., Namuco, O., Moya, T. & Quilang, J. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agron. J. 89, 45–53 (1997).

    Article 

    Google Scholar
     

  • Emam, A. I. I. et al. Enriched grain minerals in Aegilops tauschii-derived common wheat population under heat-stress environments. Sci. Rep. 15, 5624 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Han, S., Liu, X., Makowski, D. & Ciais, P. Meta-analysis of water stress impact on rice quality in China. Agric. Water Manag. 307, 109230 (2025).

    Article 

    Google Scholar
     

  • Lan, Y., Kuktaite, R., Chawade, A. & Johansson, E. Chasing high and stable wheat grain mineral content: mining diverse spring genotypes under induced drought stress. PLoS ONE 19, e0298350 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yue, L. et al. The mechanism of manganese ferrite nanomaterials promoting drought resistance in rice. Nanomaterials https://doi.org/10.3390/nano13091484 (2023).

  • Zhou, R. et al. Effects of high temperature on grain quality and enzyme activity in heat-sensitive versus heat-tolerant rice cultivars. J. Sci. Food Agric. 104, 9729–9741 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zahra, N. et al. Impact of climate change on wheat grain composition and quality. J. Sci. Food Agric. 103, 2745–2751 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Galani, Y. J. H. et al. Effects of combined abiotic stresses on nutrient content of European wheat and implications for nutritional security under climate change. Sci. Rep. 12, 5700 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nasiroleslami, E., Mozafari, H., Sadeghi-Shoae, M., Habibi, D. & Sani, B. Changes in yield, protein, minerals, and fatty acid profile of wheat (Triticum aestivum L.) under fertilizer management involving application of nitrogen, humic acid, and seaweed extract. J. Soil Sci. Plant Nutr. 21, 2642–2651 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Castellari, M. P., Poffenbarger, H. J. & Van Sanford, D. A. Sulfur fertilization effects on protein concentration and yield of wheat: a meta-analysis. Field Crops Res. 302, 109061 (2023).

    Article 

    Google Scholar
     

  • Christensen, A. J., Srinivasan, V., Hart, J. C. & Marshall-Colon, A. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security. Nutr. Rev. 76, 332–347 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J. et al. Assimilation of remote sensing into crop growth models: current status and perspectives. Agric. For. Meteorol. 276—277, 107609 (2019).

    Article 

    Google Scholar
     

  • Silva, J. V. & Giller, K. E. Grand challenges for the 21st century: what crop models can and can’t (yet) do. J. Agric. Sci. 158, 794–805 (2020).

    Article 

    Google Scholar
     

  • Vos, J. et al. Functional–structural plant modelling: a new versatile tool in crop science. J. Exp. Bot. 61, 2101–2115 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Karageorgou, D. et al. Harmonising dietary datasets for global surveillance: methods and findings from the Global Dietary Database. Public Health Nutr. 27, e47 (2024).

    Article 

    Google Scholar
     

  • Smith, M. R., Micha, R., Golden, C. D., Mozaffarian, D. & Myers, S. S. Global Expanded Nutrient Supply (GENuS) Model: a new method for estimating the global dietary supply of nutrients. PLoS ONE 11, e0146976 (2016).

    Article 

    Google Scholar
     

  • Fredenberg, E. et al. Vision for Adapted Crops and Soils (VACS) Research in Action: Opportunity Crops for Africa (Rockefeller Foundation, 2024).