• Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article 

    Google Scholar
     

  • Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Qiang, X. G. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148 (2020).

    Article 
    CAS 

    Google Scholar
     

  • He, Y. M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rezai, M., Wrachtrup, J. & Gerhardt, I. Coherence properties of molecular single photons for quantum networks. Phys. Rev. X 8, 031026 (2018).

    CAS 

    Google Scholar
     

  • Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, D. et al. Quantum interference of resonance fluorescence from germanium-vacancy color centers in diamond. Nano Lett. 22, 6306–6312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez, J. A. et al. Photonic indistinguishability of the tin-vacancy center in nanostructured diamond. Phys. Rev. Lett. 129, 173603 (2022).

    Article 

    Google Scholar
     

  • Türschmann, P. et al. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett. 17, 4941–4945 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article 

    Google Scholar
     

  • Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, P. et al. Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition. Nat. Commun. 13, 3982 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shkarin, A. et al. Nanoscopic charge fluctuations in a gallium phosphide waveguide measured by single molecules. Phys. Rev. Lett. 126, 133602 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You, X. et al. Quantum interference with independent single-photon sources over 300 km fiber. Adv. Photon. 4, 066003 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duquennoy, R. et al. Real-time two-photon interference from distinct molecules on the same chip. Optica 9, 731–737 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Papon, C. et al. Independent operation of two waveguide-integrated quantum emitters. Phys. Rev. Appl. 19, L061003 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dusanowski, Ł., Köck, D., Schneider, C. & Höfling, S. On-chip Hong–Ou–Mandel interference from separate quantum dot emitters in an integrated circuit. ACS Photon. 10, 2941–2947 (2023).

  • Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waltrich, R., Klotz, M., Agafonov, V. N. & Kubanek, A. Two-photon interference from silicon-vacancy centers in remote nanodiamonds. Nanophotonics 12, 3663–3669 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolet, A. A. et al. Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites. ChemPhysChem 8, 1929–1936 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

    Article 

    Google Scholar
     

  • Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kimble, H. & Mandel, L. Theory of resonance fluorescence. Phys. Rev. A 13, 2123 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Proux, R. et al. Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 114, 067401 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Schofield, R. C. et al. Photon indistinguishability measurements under pulsed and continuous excitation. Phys. Rev. Res. 4, 013037 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Koong, Z. X. et al. Fundamental limits to coherent photon generation with solid-state atomlike transitions. Phys. Rev. Lett. 123, 167402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, C. L. et al. Photon statistics of filtered resonance fluorescence. Phys. Rev. Lett. 125, 043603 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanschke, L. et al. Origin of antibunching in resonance fluorescence. Phys. Rev. Lett. 125, 170402 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lange, C. M. et al. Cavity QED with molecular defects coupled to a photonic crystal cavity. Preprint at https://arxiv.org/abs/2506.01917 (2025).

  • Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gimeno-Segovia, M., Rudolph, T. & Economou, S. E. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett. 123, 070501 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brod, D. J. et al. Photonic implementation of boson sampling: a review. Adv. Photon. 1, 034001 (2019).

    CAS 

    Google Scholar
     

  • Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Trebbia, J. B., Deplano, Q., Tamarat, P. & Lounis, B. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters. Nat. Commun. 13, 2962 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lukin, D. M. et al. Two-emitter multimode cavity quantum electrodynamics in thin-film silicon carbide photonics. Phys. Rev. X 13, 011005 (2023).

    CAS 

    Google Scholar
     

  • Rattenbacher, D. et al. On-chip interference of scattering from two individual molecules. Optica 10, 1595–1601 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lange, C. M., Daggett, E., Walther, V., Huang, L. & Hood, J. D. Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning. Nat. Phys. 20, 836–842 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article 

    Google Scholar
     

  • Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Loudon, R. The Quantum Theory of Light 3rd edn (Oxford Univ. Press, 2000).

  • Grandi, S. et al. Quantum dynamics of a driven two-level molecule with variable dephasing. Phys. Rev. A 94, 063839 (2016).

    Article 

    Google Scholar
     

  • Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions: Basic Process and Applications (Wiley, 1998).

  • Manzano, D. A short introduction to the Lindblad master equation. AIP Adv. 10, 025106 (2020).

    Article 

    Google Scholar
     

  • Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).

    Article 

    Google Scholar
     

  • Eberly, J. H. & Wódkiewicz, K. The time-dependent physical spectrum of light. J. Opt. Soc. Am. 67, 1252–1261 (1977).

    Article 

    Google Scholar
     

  • del Valle, E., Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C. & Hartmann, M. J. Theory of frequency-filtered and time-resolved N-photon correlations. Phys. Rev. Lett. 109, 183601 (2012).

    Article 
    PubMed 

    Google Scholar