• Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Modern Phys. 87, 637–701 (2015).

  • Poli, N. et al. A transportable strontium optical lattice clock. Appl. Phys. B 117, 1107–1116 (2014).

  • Moody, G. et al. 2022 Roadmap on integrated quantum photonics. J. Phys. Photon. 4, 012501 (2022).

  • Monroe, C. & Kim, J. Scaling the Ion Trap Quantum Processor. Science 339, 1164–1169 (2013).

  • Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quant. 2, 020343 (2021).

  • Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).

  • Ivory, M. et al. Integrated optical addressing of a trapped ytterbium ion. Phys. Rev. X 11, 041033 (2021).

  • Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

  • Roeloffzen, C. G. et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Select. Top. Quant. Electron. 24, 1–21 (2018).

  • Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proceedings of the IEEE 106, 2209–2231 (2018).

  • Blatt, R., Häffner, H., Roos, C. F., Becher, C. & Schmidt-Kaler, F. Ion Trap Quantum Computing with Ca+ Ions. Quant. Inform. Process. 3, 61–73 (2004).

  • Nop, G. N., Paudyal, D. & Smith, J. D. H. Ytterbium ion trap quantum computing: the current state-of-the-art. AVS Quant. Sci. 3, 044101 (2021).

  • Corato-Zanarella, M., Ji, X., Mohanty, A. & Lipson, M. Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum. Opt. Express 32, 5718–5728 (2024).

  • West, G. N. et al. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photon. 4, 026101 (2019).

  • Lu, T.-J. et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 26, 11147–11160 (2018).

  • Weinberg, Z. A., Rubloff, G. W. & Bassous, E. Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films. Phys. Rev. B 19, 3107 (1979).

  • He, C. et al. Ultra-high Q alumina optical microresonators in the UV and blue bands. Opt. Express 31, 33923–33929 (2023).

  • Lin, C. et al. UV photonic integrated circuits for far-field structured illumination autofluorescence microscopy. Nat. Commun. 13, 4360 (2022).

  • Shin, W., Sun, Y., Soltani, M. & Mi, Z. Demonstration of green and UV wavelength high Q aluminum nitride on sapphire microring resonators integrated with microheaters. Appl. Phys. Lett. 118, 211103 (2021).

  • Hendriks, W., Dawson, B., Mardani, S., Dijkstra, M. & Garcia-Blanco, S. UV integrated photonics in sputter deposited aluminum oxide. Opt. Open (pre-print) (2024).

  • Castillo, Z. A. et al. CMOS-fabricated ultraviolet light modulators using low-loss alumina piezo-optomechanical photonic circuits. ArXiv (2024).

  • Hogle, C. W. et al. High-fidelity trapped-ion qubit operations with scalable photonic modulators. npj Quant. Inform. 9, 74 (2023).

  • Menssen, A. J. et al. Scalable photonic integrated circuits for high-fidelity light control. Optica 10, 1366–1372 (2023).

  • Fan, Y. et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express 28, 21713 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, D. et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica 6, 745–752 (2019).

  • Boller, K. J. et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 7, 4 (2020).

  • Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904–4907 (2021).

  • Winkler, L. V. et al. Widely tunable and narrow-linewidth hybrid-integrated diode laser at 637 nm. Opt. Express 32, 29710–29720 (2024).

  • Wunderer, T. et al. Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips. Opt. Lett. 48, 2781–2784 (2023).

  • Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2022).

  • Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon. 7, 046108 (2022).

  • Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

  • Liu, D. et al. 226 nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 113, 011111 (2018).

  • Hendriks, W. A. P. M. et al. Rare-earth ion doped Al2O3 for active integrated photonics. Adv. Phys. X 6, 1833753 (2021).

  • Bonneville, D. B., Frankis, H. C., Wang, R. & Bradley, J. D. B. Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching. Opt. Express 28, 30130–30140 (2020).

  • Kneissl, M., Seong, T.-Y., Han, J. & Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photon. 13, 233–244 (2019).

  • Hjort, F. et al. A 310 nm optically pumped AlGaN vertical-cavity surface-emitting laser. ACS Photon. 8, 141 (2021).

  • Schwelb, O. & Frigyes, I. Vernier operation of series-coupled optical microring resonator filters. Microw. Opt. Technol. Lett. 39, 257–261 (2003).

  • Jakschik, S. et al. Crystallization behavior of thin ALD-Al2O3 films. Thin Solid Films 425, 216–220 (2003).

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346-353 (2021).

  • Ranno, L. et al. Integrated Photonics Packaging: Challenges and Opportunities. ACS Photon. 9, 3467–3485 (2022).

  • van Rees, A. et al. Ring resonator enhanced mode-hop-free wavelength tuning of an integrated extended-cavity laser. Opt. Express 28, 5669–5683 (2020).

  • Müller, J. et al. Burn-in mechanism of 450 nm InGaN ridge laser test structures. Appl. Phys. Lett. 95, 051104 (2009).

  • Epping, J. P. et al. Hybrid Integrated Silicon Nitride Lasers (Proc. SPIE 11274, 2020).

  • Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940 (1958).

  • Dullo, F. T. et al. Low-loss, low-background aluminum oxide waveguide platform for broad-spectrum on-chip microscopy. Opt. Lett. 50, 2159–2162 (2025).

  • Zhao, R. et al. Hybrid dual-gain tunable integrated InP-Si3N4 external cavity laser. Opt. Express 29, 10958–10966 (2021).

  • Komljenovic, T. et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J. Select. Top. Quant. Electron. 21, 214–222 (2015).

  • Mardani, S., Dijkstra, M., Hendriks, W. A. P. M., Nijhuis-Groen, M. P. & García-Blanco, S. M. Low-loss chemical mechanically polished Al2O3 thin films for UV integrated photonics (23rd European Conference on Integrated Optics, 2022).

  • McKay, E., Pruiti, N. G., May, S. & Sorel, M. High-confinement alumina waveguides with sub-dB/cm propagation losses at 450 nm. Sci. Rep. 13, 19917 (2023).

  • Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

  • Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

  • Sawamura, H., Toyoda, K. & Urabe, S. Optimization of Doppler cooling of a single 40Ca+ Ion. Jap. J. Appl. Phys. 46, 1713 (2007).

  • Chichibu, S. F. et al. Optical and structural studies in InGaN quantum well structure laser diodes. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measure. Phenomena 19, 2177–2183 (2001).

  • Romero-García, S., Merget, F., Zhong, F., Finkelstein, H. & Witzens, J. Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector. Opt. Lett. 38, 2521–2523 (2013).

  • Taylor, P. et al. Investigation of the 2S1/2-2D5/2 clock transition in a single ytterbium ion. Phys. Rev. A56, 2699 (1997).

  • Tsokos, C. et al. True time delay optical beamforming network based on hybrid InP-silicon nitride integration. J. Lightw. Technol. 39, 5845–5854 (2021).

  • Epping, J. P. et al. High power, tunable, narrow linewidth dual gain hybrid laser. In Laser Congress 2019 (ASSL, LAC, LS&C) (OSA).

  • Franken, C. A. A. et al. High-power and narrow-linewidth laser on thin-film lithium niobate enabled by photonic wire bonding. APL Photon. 10, 026107 (2025).

  • Franken, C. A. A. et al. Milliwatt-level UV generation using sidewall poled lithium niobate. ArXiv (2025).

  • van Emmerik, C. I. et al. Relative oxidation state of the target as guideline for depositing optical quality RF reactive magnetron sputtered Al2O3 layers. Opt. Mater. Express 10, 1451–1462 (2020).

  • Saruwatari, M. & Nawata, K. Semiconductor laser to single-mode fiber coupler. Appl. Opt. 18, 1847–1856 (1979).

  • Donati, S. & Horng, R. H. The diagram of feedback regimes revisited. IEEE J. Sel. Top. Quantum Electron. 19, 1500309 (2013).

  • Schoedl, T. et al. Facet degradation of GaN heterostructure laser diodes. J. Appl. Phys. 97, 123102 (2005).

  • Richter, L. E., Mandelberg, H. I., Kruger, M. S. & McGrath, P. A. Linewidth determination from self-heterodyne measurements with subcoherence delay times. IEEE J. Quant. Electron. 22, 2070–2074 (1986).

  • van Rees, A. Widely-tunable and ultra-stable hybrid-integrated diode lasers. Ph.D. thesis, University of Twente, Enschede, The Netherlands (2024).

  • Lasher, G. & Stern, F. Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. 133, A553 (1964).

  • Wenzel, H., Kantner, M., Radziunas, M. & Bandelow, U. Semiconductor laser linewidth theory revisited. Appl. Sci. 11, 6004 (2021).

  • Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quant. Electron. 18, 259–264 (1982).

  • Ujihara, K. Phase noise in a laser with output coupling. IEEE J. Quant. Electron. 20, 814–818 (1984).

  • Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

  • Kondratiev, N. & Gorodetsky, M. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).

  • Franta, D., Nečas, D., Ohlídal, I. & Giglia, A. Optical characterization of SiO2 thin films using universal dispersion model over wide spectral range. In Optical Micro- and Nanometrology VI, vol. 9890, 989014 (SPIE, 2016).

  • Meng, F. W., Xu, B. & Tian, Q. Growth of near-stoichiometric lithium tantalite crystal and its optical characterization. Adv. Mater. Res. 900, 333–336 (2014).

  • Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242 (2021).

    Article 

    Google Scholar
     

  • Cody, G. Urbach edge of crystalline and amorphous silicon: a personal review. J. Non Cryst. Solids 141, 3–15 (1992).

  • Chiles, J., Khan, S., Ma, J. & Fathpour, S. High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics. Appl. Phys. Lett. 103 (2013).