• Lieb, E. H. & Wu, F. Y. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445–1448 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Huang, E. W., Mendl, C. B., Jiang, H.-C., Moritz, B. & Devereaux, T. P. Stripe order from the perspective of the Hubbard model. npj Quantum Mater. 3, 22 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).


    Google Scholar
     

  • Qin, M., Shi, H. & Zhang, S. Benchmark study of the two-dimensional Hubbard model with auxiliary-field quantum Monte Carlo method. Phys. Rev. B 94, 085103 (2016).

    Article 
    ADS 

    Google Scholar
     

  • LeBlanc, J. P. F. et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).


    Google Scholar
     

  • Jiang, H.-C. & Kivelson, S. A. Stripe order enhanced superconductivity in the Hubbard model. Proc. Natl Acad. Sci. USA 119, e2109406119 (2022).

    Article 

    Google Scholar
     

  • Xu, W., Haule, K. & Kotliar, G. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective. Phys. Rev. Lett. 111, 036401 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Deng, X. et al. How bad metals turn good: spectroscopic signatures of resilient quasiparticles. Phys. Rev. Lett. 110, 086401 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Park, H., Haule, K. & Kotliar, G. Cluster dynamical mean field theory of the Mott transition. Phys. Rev. Lett. 101, 186403 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kancharla, S. S. et al. Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators. Phys. Rev. B 77, 184516 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Maier, T., Jarrell, M., Pruschke, T. & Hettler, M. H. Quantum cluster theories. Rev. Mod. Phys. 77, 1027–1080 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Mai, P., Karakuzu, S., Balduzzi, G., Johnston, S. & Maier, T. A. Intertwined spin, charge, and pair correlations in the two-dimensional Hubbard model in the thermodynamic limit. Proc. Natl Acad. Sci. USA 119, e2112806119 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Mai, P. et al. Robust charge-density-wave correlations in the electron-doped single-band Hubbard model. Nat. Commun. 14, 2889 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Werner, P., Gull, E., Parcollet, O. & Millis, A. J. Momentum-selective metal-insulator transition in the two-dimensional Hubbard model: an 8-site dynamical cluster approximation study. Phys. Rev. B 80, 045120 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Rohringer, G. et al. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys. 90, 025003 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Schäfer, T., Toschi, A. & Held, K. Dynamical vertex approximation for the two-dimensional Hubbard model. J. Magn. Magn. Mater. 400, 107–111 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Schäfer, T. et al. Tracking the footprints of spin fluctuations: a multimethod, multimessenger study of the two-dimensional Hubbard model. Phys. Rev. X 11, 011058 (2021).


    Google Scholar
     

  • Rubtsov, A. N., Katsnelson, M. I. & Lichtenstein, A. I. Dual fermion approach to nonlocal correlations in the Hubbard model. Phys. Rev. B 77, 033101 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Stanescu, T. D. & Kotliar, G. Fermi arcs and hidden zeros of the green function in the pseudogap state. Phys. Rev. B 74, 125110 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Ferrero, M. et al. Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space. Phys. Rev. B 80, 064501 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wu, W. et al. Pseudogap and Fermi-surface topology in the two-dimensional Hubbard model. Phys. Rev. X 8, 021048 (2018).


    Google Scholar
     

  • Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Huang, E. W., Sheppard, R., Moritz, B. & Devereaux, T. P. Strange metallicity in the doped Hubbard model. Science 366, 987–990 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Brown, P. T. et al. Bad metallic transport in a cold atom Fermi-Hubbard system. Science 363, 379–382 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hatsugai, Y. & Kohmoto, M. Exactly solvable model of correlated lattice electrons in any dimensions. J. Phys. Soc. Jpn 61, 2056–2069 (1992).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Phillips, P. W., Yeo, L. & Huang, E. W. Exact theory for superconductivity in a doped Mott insulator. Nat. Phys. 16, 1175–1180 (2020).

    Article 

    Google Scholar
     

  • Huang, E. W., Nave, G. L. & Phillips, P. W. Discrete symmetry breaking defines the Mott quartic fixed point. Nat. Phys.s 18, 511–516 (2022).

    Article 

    Google Scholar
     

  • Zhao, M., Yang, W.-W. & Zhong, Y. Hatsugai-Kohmoto models: exactly solvable playground for Mottness and non-Fermi liquid. J. Phys.: Condens. Matter 37, 183005 (2025).

    ADS 

    Google Scholar
     

  • Skolimowski, J. Real-space analysis of Hatsugai-Kohmoto interaction. Phys. Rev. B 109, 165129 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ma, Y. et al. Charge susceptibility and Kubo response in Hatsugai-Kohmoto-related models. Phys. Rev. B 112, 045109 (2025).

    Article 
    ADS 

    Google Scholar
     

  • White, S. R. et al. Numerical study of the two-dimensional Hubbard model. Phys. Rev. B 40, 506–516 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Seki, K. & Yunoki, S. Brillouin-zone integration scheme for many-body density of states: tetrahedron method combined with cluster perturbation theory. Phys. Rev. B 93, 245115 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Huang, E. W., Ding, S., Liu, J. & Wang, Y. Determinantal quantum Monte Carlo solver for cluster perturbation theory. Phys. Rev. Res. 4, L042015 (2022).

    Article 

    Google Scholar
     

  • Meinders, M. B. J., Eskes, H. & Sawatzky, G. A. Spectral-weight transfer: breakdown of low-energy-scale sum rules in correlated systems. Phys. Rev. B 48, 3916–3926 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Eskes, H., Meinders, M. B. J. & Sawatzky, G. A. Anomalous transfer of spectral weight in doped strongly correlated systems. Phys. Rev. Lett. 67, 1035–1038 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Duffy, D. & Moreo, A. Specific heat of the two-dimensional Hubbard model. Phys. Rev. B 55, 12918–12924 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Wang, W. O., Ding, J. K., Moritz, B., Huang, E. W. & Devereaux, T. P. Magnon heat transport in a two-dimensional Mott insulator. Phys. Rev. B 105, L161103 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J., La Nave, G. & Phillips, P. W. Proof of a stable fixed point for strongly correlated electron matter. Phys. Rev. B 108, 165135 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Manning-Coe, D. & Bradlyn, B. Ground state stability, symmetry, and degeneracy in Mott insulators with long-range interactions. Phys. Rev. B 108, 165136 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Mai, P., Feldman, B. E. & Phillips, P. W. Topological Mott insulator at quarter filling in the interacting Haldane model. Phys. Rev. Res. 5, 013162 (2023).

    Article 

    Google Scholar
     

  • Mai, P., Zhao, J., Feldman, B. E. & Phillips, P. W. 1/4 is the new 1/2 when topology is intertwined with Mottness. Nat. Commun. 14, 5999 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jabłonowski, K., Skolimowski, J., Brzezicki, W., Byczuk, K. & Wysokiński, M. M. Topological Mott insulator in the odd-integer filled Anderson lattice model with Hatsugai-Kohmoto interactions. Phys. Rev. B 108, 195145 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, Y. Solvable periodic anderson model with infinite-range Hatsugai-Kohmoto interaction: ground-states and beyond. Phys. Rev. B 106, 155119 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Setty, C. et al. Symmetry constraints and spectral crossing in a Mott insulator with Green’s function zeros. Phys. Rev. Res. 6, L032018 (2024).

    Article 

    Google Scholar
     

  • Huang, E. W. Strong-coupling mechanism of the pseudogap in small Hubbard clusters. Preprint at https://arxiv.org/abs/2010.12601 (2020).

  • Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Qin, M., Sch’´afer, T., Andergassen, S., Corboz, P. & Gull, E. The Hubbard model: a computational perspective. Annu. Rev. Condens. Matter Phys. 13, 275–302 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schumm, G., Zhang, S. & Sandvik, A. W. Single-particle dispersion and density of states of the half-filled 2D Hubbard model. Phys. Rev. B 112, 085109 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Harris, A. B. & Lange, R. V. Single-particle excitations in narrow energy bands. Phys. Rev. 157, 295–314 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Phillips, P. Colloquium: identifying the propagating charge modes in doped Mott insulators. Rev. Mod. Phys. 82, 1719–1742 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Tenkila, G., Zhao, J. & Phillips, P. W. Dynamical spectral weight transfer in the orbital Hatsugai-Kohmoto model. Phys. Rev. B 111, 045126 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Worm, P., Reitner, M., Held, K. & Toschi, A. Fermi and Luttinger arcs: two concepts, realized on one surface. Phys. Rev. Lett. 133, 166501 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Vollhardt, D. Characteristic crossing points in specific heat curves of correlated systems. Phys. Rev. Lett. 78, 1307–1310 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Mai, P., Zhao, J., Maier, T. A., Bradlyn, B. & Phillips, P. W. Topological phase transition without single particle gap closing in strongly correlated systems. Phys. Rev. B 110, 075105 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J., Mai, P., Bradlyn, B. & Phillips, P. Failure of topological invariants in strongly correlated matter. Phys. Rev. Lett. 131, 106601 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. Sec. A 62, 416 (1949).

    Article 
    ADS 

    Google Scholar
     

  • Guerci, D., Sangiovanni, G., Millis, A. J. & Fabrizio, M. Electrical transport in the Hatsugai-Kohmoto model. Phys. Rev. B 111, 075124 (2025).

    Article 
    ADS 

    Google Scholar
     

  • White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    Article 
    ADS 

    Google Scholar
     

  • White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10356 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45, 255 (1950).

    Article 
    MathSciNet 

    Google Scholar
     

  • Towns, J. et al. Xsede: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article 

    Google Scholar
     

  • Mai, P. Data for Mai etal Twisting Hubbard into the Momentum-Mixing Hatsugai-Kohmoto Model. Zenodo https://doi.org/10.5281/zenodo.17096693 (2025).