• Garcia, B. A. et al. Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat. Protoc. 2, 933–938 (2007).


    Google Scholar
     

  • King, J., Patel, M. & Chandrasekaran, S. Metabolism, HDACs, and HDAC inhibitors: a systems biology perspective. Metabolites 11, 792 (2021).

  • Boumber, Y., Younes, A. & Garcia-Manero, G. Mocetinostat (MGCD0103): a review of an isotype-specific histone deacetylase inhibitor. Expert Opin. Investig. Drugs 20, 823–829 (2011).


    Google Scholar
     

  • Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

  • Meers, M. P., Llagas, G., Janssens, D. H., Codomo, C. A. & Henikoff, S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat. Biotechnol. 41, 708–716 (2023).


    Google Scholar
     

  • Orsburn, B. C., Yuan, Y. & Bumpus, N. N. Insights into protein post-translational modification landscapes of individual human cells by trapped ion mobility time-of-flight mass spectrometry. Nat. Commun. 13, 7237 (2022).

  • Orsburn, B. C. Metabolomic, proteomic, and single-cell proteomic analysis of cancer cells treated with the KRASG12D inhibitor MRTX1133. J. Proteome Res. 22, 3703–3713 (2023).


    Google Scholar
     

  • Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).


    Google Scholar
     

  • Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell. Proteomics 13, 3497–3506 (2014).

  • Lanz, M. C., Fuentes Valenzuela, L., Elias, J. E. & Skotheim, J. M. Cell size contributes to single-cell proteome variation. J. Proteome Res. 23, 221–231 (2024).

  • Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteomics 17, 2284–2296 (2018).

  • Eberhard, C. D. & Orsburn, B. C. A. Multiplexed single-cell proteomic workflow applicable to drug treatment studies. in Proteomics for Drug Discovery (ed. Blonder, J.) 1–10 (Springer, 2024).

  • Gygi, J. P. et al. Web-based search tool for visualizing instrument performance using the triple knockout (TKO) proteome standard. J. Proteome Res. 18, 687–693 (2019).


    Google Scholar
     

  • Paulo, J. A., O’Connell, J. D. & Gygi, S. P. A Triple Knockout (TKO) Proteomics Standard for Diagnosing Ion Interference in Isobaric Labeling Experiments. J. Am. Soc. Mass Spectrom. 27, 1674–1681 (2016).

  • Yates, J. R., Ruse, C. I. & Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 49–79 (2009).

  • Bian, Y. et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat. Commun. 11, 157 (2020).

  • Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteomics 14, 1400–1410 (2015)

  • Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics 11, 1475–88 (2012).

  • Singh, C., Zampronio, C. G., Creese, A. J. & Cooper, H. J. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J. Proteome Res. 11, 4517–4525 (2012).

  • Zolg, D. P. et al. ProteomeTools: systematic characterization of 21 post-translational protein modifications by liquid chromatography tandem mass spectrometry (LC-MS/MS) using synthetic peptides. Mol. Cell. Proteomics 17, 1850–1863 (2018).

  • Armony, G. et al. The GlycoPaSER prototype as a real-time N-glycopeptide identification tool based on the PaSER parallel computing platform. Int. J. Mol. Sci. 24, 7869 (2023).

  • Toghi Eshghi, S. et al. Classification of tandem mass spectra for identification of N- and O-linked glycopeptides. Sci. Rep. 6, 37189 (2016).

  • Jenkins, C. & Orsburn, B. C. Simple tool for rapidly assessing the quality of multiplexed single cell proteomics data. J. Am. Soc. Mass Spectrom. 34, 1709–1711 (2023).

  • Gallia, J., Lavrich, K., Tan-Wilson, A. & Madden, P. H. Filtering of MS/MS data for peptide identification. BMC Genomics 14, S2 (2013).


    Google Scholar
     

  • Chang, Y.-C. et al. Decrypting lysine deacetylase inhibitor action and protein modifications by dose-resolved proteomics. Cell Rep. 43, 113612 (2024).

  • Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).


    Google Scholar
     

  • Sui, J. et al. Plasma levels of S100A8/A9, histone/DNA complexes, and cell-free DNA predict adverse outcomes of immune thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 19, 370–379 (2021).


    Google Scholar
     

  • Orsburn, B. C. An integrated method for single cell proteomics with simultaneous measurements of intracellular drug concentration implicates new mechanisms for adaptation to KRASG12D inhibitors. bioRxiv https://doi.org/10.1101/2023.11.18.567669 (2023).

  • Mardis, E. R. ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614 (2007).


    Google Scholar
     

  • Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).


    Google Scholar
     

  • Dickson, B. M., Kupai, A., Vaughan, R. M. & Rothbart, S. B. Streamlined quantitative analysis of histone modification abundance at nucleosome-scale resolution with siQ-ChIP version 2.0. Sci. Rep. 13, 7508 (2023).


    Google Scholar
     

  • Berendzen, K. W., Grefen, C., Sakamoto, T. & Slane, D. Analysis of chromatin accessibility, histone modifications, and transcriptional states in specific cell types using flow cytometry. In Plant Gene Regulatory Networks: Methods and Protocols (eds. Kaufmann, K. & Vandepoele, K.) 57–73 (Springer US, New York, NY, 2023).

  • Cheung, P. et al. Single-cell epigenetics—chromatin modification atlas unveiled by mass cytometry. Clin. Immunol. 196, 40–48 (2018).


    Google Scholar
     

  • Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).


    Google Scholar
     

  • Ctortecka, C. & Mechtler, K. The rise of single-cell proteomics. Anal. Sci. Adv. 2, 240–254 (2021).

  • Schoof, E. M. et al. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 12, 3341 (2021).


    Google Scholar
     

  • Doerr, A. DIA mass spectrometry. Nat. Methods https://doi.org/10.1038/nmeth.3234 (2014).

  • Szyrwiel, L., Sinn, L., Ralser, M. & Demichev, V. Slice-PASEF: fragmenting all ions for maximum sensitivity in proteomics. bioRxiv https://doi.org/10.1101/2022.10.31.514544 (2022).

  • Kreimer, S. et al. High-throughput single-cell proteomic analysis of organ-derived heterogeneous cell populations by nanoflow dual-trap single-column liquid chromatography. Anal. Chem. 95, 9145–9150 (2023).


    Google Scholar
     

  • Truong, T. et al. Data-dependent acquisition with precursor coisolation improves proteome coverage and measurement throughput for label-free single-cell proteomics**. Angew. Chem. Int. Ed. 62, e202303415 (2023).


    Google Scholar
     

  • Orsburn, B. C. Proteome discoverer—a community enhanced data processing suite for protein informatics. Proteomes 9, 15 (2021).