• Fukushima, K., Kharzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D. 78, 074033 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Akamatsu, Y. & Yamamoto, N. Chiral plasma instabilities. Phys. Rev. Lett. 111, 052002 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Akamatsu, Y. & Yamamoto, N. Chiral Langevin theory for non-Abelian plasmas. Phys. Rev. D. 90, 125031 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Shovkovy, I. A. in Peter Suranyi 87th Birthday Festschrift A Life in Quantum Field Theory (eds Argyres, P. et al.) 291–316 (World Scientific, 2023).

  • Boyarsky, A., Fröhlich, J. & Ruchayskiy, O. Self-consistent evolution of magnetic fields and chiral asymmetry in the early universe. Phys. Rev. Lett. 108, 031301 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Yamamoto, N. Chiral transport of neutrinos in supernovae: neutrino-induced fluid helicity and helical plasma instability. Phys. Rev. D 93, 065017 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Most, E. R. Impact of a mean field dynamo on neutron star mergers leading to magnetar remnants. Phys. Rev. D 108, 123012 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Hirono, Y., Kharzeev, D. E. & Yin, Y. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly. Phys. Rev. D 92, 125031 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

    Article 

    Google Scholar
     

  • Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhang, N. et al. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proc. Natl Acad. Sci. USA 117, 11337–11343 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Nishida, Y. Chiral light amplifier with pumped Weyl semimetals. Phys. Rev. Lett. 130, 096903 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kusunose, H., Kishine, J. -i & Yamamoto, H. M. Emergence of chirality from electron spins, physical fields, and material-field composites. Appl. Phys. Lett. 124, 260501 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Inda, A., Oiwa, R., Hayami, S., Yamamoto, H. M. & Kusunose, H. Quantification of chirality based on electric toroidal monopole. J. Chem. Phys. 160, 184117 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y., Wu, S. & Burkov, A. A. Axion response in Weyl semimetals. Phys. Rev. B 88, 125105 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J. & Pesin, D. A. Chiral magnetic effect and natural optical activity in metals with or without weyl points. Phys. Rev. B 92, 235205 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, S., Moore, J. E. & Souza, I. Gyrotropic magnetic effect and the magnetic moment on the Fermi surface. Phys. Rev. Lett. 116, 077201 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Calavalle, F. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 21, 526–532 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Furukawa, T., Shimokawa, Y., Kobayashi, K. & Itou, T. Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun. 8, 954 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Caldwell, R. S. & Fan, H. Y. Optical properties of tellurium and selenium. Phys. Rev. 114, 664–675 (1959).

    Article 
    ADS 

    Google Scholar
     

  • Dekorsy, T., Auer, H., Bakker, H. J., Roskos, H. G. & Kurz, H. THz electromagnetic emission by coherent infrared-active phonons. Phys. Rev. B 53, 4005–4014 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Tani, M. et al. Terahertz radiation from coherent phonons excited in semiconductors. J. Appl. Phys. 83, 2473–2477 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Johnston, M. B., Whittaker, D. M., Corchia, A., Davies, A. G. & Linfield, E. H. Simulation of terahertz generation at semiconductor surfaces. Phys. Rev. B 65, 165301 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Shan, J., Weiss, C., Wallenstein, R., Beigang, R. & Heinz, T. Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces. Opt. Lett. 26, 849–851 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Barkhuijsen, H., de Beer, R., Bovée, W. & van Ormondt, D. Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J. Magn. Reson. 61, 465–481 (1985).

    ADS 

    Google Scholar
     

  • Led, J. J. & Gesmar, H. Application of the linear prediction method to NMR spectroscopy. Chem. Rev. 91, 1413–1426 (1991).

    Article 

    Google Scholar
     

  • Huang, Y. et al. Nonthermal bonding origin of a novel photoexcited lattice instability in SnSe. Phys. Rev. Lett. 131, 156902 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Torrie, B. Raman spectrum of tellurium. Solid State Commun. 8, 1899–1901 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Tanuma, S. The effect of thermally produced lattice defects on the electrical properties of tellurium. Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 6, 159–171 (1954).


    Google Scholar
     

  • Couder, Y., Hulin, M. & Thomé, H. Cyclotron resonance in tellurium. Phys. Rev. B 7, 4373–4385 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Betbeder-Matibet, O. & Hulin, M. Semi-empirical model for the valence band structure of tellurium. Phys. Status Solidi B 36, 573–586 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Tani, T. & Tanaka, S. Pressure effect on the impurity state and impurity conduction in tellurium. In The Physics of Selenium and Tellurium: Proc. International Conference on the Physics of Selenium and Tellurium (eds Gerlach, E. & Grosse, P.) 142–152 (Springer, 1979).

  • Natori, K., Ando, T., Tsukada, M., Nakao, K. & Uemura, Y. The acceptor states in tellurium. J. Phys. Soc. Jpn. 34, 1263–1270 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Hardy, D., Rigaux, C., Vieren, J. P. & Hau, N. H. Impurities and intervalence band magneto-optical transitions in tellurium. Phys. Status Solidi B 47, 643–653 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Shinno, H., Yoshizaki, R., Tanaka, S., Doi, T. & Kamimura, H. Conduction band structure of tellurium. J. Phys. Soc. Jpn 35, 525–533 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Jnawali, G. et al. Ultrafast photoinduced band splitting and carrier dynamics in chiral tellurium nanosheets. Nat. Commun. 11, 3991 (2020).

    Article 

    Google Scholar
     

  • Dressel, M., Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge Univ. Press, 2002).

    Book 

    Google Scholar
     

  • Bottom, V. E. The Hall effect and electrical resistivity of tellurium. Science 115, 570–571 (1952).

    Article 
    ADS 

    Google Scholar
     

  • Madelung, O. Semiconductors—Basic Data (Springer Science & Business Media, 2012).

  • Huang, K. On the interaction between the radiation field and ionic crystals. Proc. R. Soc. Lond. Ser. A 208, 352–365 (1951).

    Article 
    ADS 

    Google Scholar
     

  • Amitani, T. & Nishida, Y. Dynamical chiral magnetic current and instability in Weyl semimetals. Phys. Rev. B 107, 014302 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tutihasi, S., Roberts, G., Keezer, R. & Drews, R. Optical properties of tellurium in the fundamental absorption region. Phys. Rev. 177, 1143 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Hopkins, M. et al. Temperature dependence of the cyclotron-resonance linewidth in GaAs-Ga1−x AlxAs heterojunctions. Phys. Rev. B 39, 13302 (1989).

    Article 
    ADS 

    Google Scholar
     

  • He, W.-Y. & Law, K. T. Magnetoelectric effects in gyrotropic superconductors. Phys. Rev. Res. 2, 012073 (2020).

    Article 

    Google Scholar
     

  • Anastassakis, E. M. in Dynamical Properties of Solids Vol. 4 (eds Horton, G. W. & Maradudin, A. A.) 357 (Elsevier, 1980).

  • Li, J. J., Chen, J., Reis, D. A., Fahy, S. & Merlin, R. Optical probing of ultrafast electronic decay in Bi and Sb with slow phonons. Phys. Rev. Lett. 110, 047401 (2013).

    Article 
    ADS 

    Google Scholar
     

  • O’Mahony, S. M. et al. Ultrafast relaxation of symmetry-breaking photo-induced atomic forces. Phys. Rev. Lett. 123, 087401 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J. et al. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect. Nat. Commun. 13, 5425 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chen, J. et al. Topological phase change transistors based on tellurium Weyl semiconductor. Sci. Adv. 8, eabn3837 (2022).

    Article 

    Google Scholar
     

  • Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Rev. Lett. 114, 206401 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Suárez-Rodríguez, M. et al. Odd nonlinear conductivity under spatial inversion in chiral tellurium. Phys. Rev. Lett. 132, 046303 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Nomura, K. C. Optical activity in tellurium. Phys. Rev. Lett. 5, 500–501 (1960).

    Article 
    ADS 

    Google Scholar
     

  • Rinkel, P., Lopes, P. L. S. & Garate, I. Signatures of the chiral anomaly in phonon dynamics. Phys. Rev. Lett. 119, 107401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    Article 

    Google Scholar
     

  • Ooguri, H. & Oshikawa, M. Instability in magnetic materials with a dynamical axion field. Phys. Rev. Lett. 108, 161803 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Planken, P. C., Nienhuys, H.-K., Bakker, H. J. & Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. JOSA B 18, 313–317 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Ropagnol, X. et al. Efficient terahertz generation and detection in cadmium telluride using ultrafast ytterbium laser. Appl. Phys. Lett. 117, 181101 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Y. & Mahmood, F. Data for observation of a dynamic magneto-chiral instability in photoexcited tellurium. Illinois Data Bank https://doi.org/10.13012/B2IDB-1409842_V3 (2025).